
Mathematical Induction

What it is?

Why is it a 
legitimate proof 

method?

How to use it?



Induction Proofs Outline

• Foundation: 
logic background
the well-ordering principle.

• What is the principle of Mathematical induction?

• Induction in Action

• How not to do induction proofs

• Strong Induction



• Implication: AB, where A and B are boolean
values.   If A, then B

– If it rains today, I will use my umbrella.

• When is this statement true?
– When I use my umbrella

– When it does not rain

• When is it false?
– Only when it rains and I do not use my umbrella.

Some Logic Background

A B AB

T T T

T F F

F T T

F F T



• Conclusions:

– If we know that AB is true, and B is false, then A
must be …

– Another expression that is equivalent to AB:

• ¬ A OR B (think about the truth table for ¬A OR B )

– What similar expression is equivalent to ¬(AB)?

Implication: AB A B AB

T T T

T F F

F T T

F F T

If AB is true, and B is false, then A must be false

Answer to last question: A  AND ¬ B



• ¬B  ¬A is called the contrapositive of AB

• Notice that the third and sixth columns of the 
truth table are the same.

• Thus an implication is true if and only if 
its contrapositive is true.

Contrapositive of AB

A B AB ¬B ¬A ¬B   ¬A

T T T F F T

T F F T F F

F T T F T T

F F T T T T



• If A is a boolean value, the value of the expression A 
AND ¬A is _____.  This expression is known as a 
contradiction.

• Putting this together with what we saw previously, 
if B  (A AND ¬A) is True, what can we say about B?

• This is the basis for “proof by contradiction”.
– To show that B is true, we find an A for which we can 

show that
¬B  (A AND ¬A) is true.

– This is the approach we will use in our proof that 
Mathematical induction works.

Contradictions

Answer to question: False:



• It's an axiom, not something that we can prove.

• WOP: Every non-empty set of non-negative integers has a 
smallest element.

• Note the importance of "non-empty", "non-negative", and 
"integers".

– The empty set does not have a smallest element.

– A set with no lower bound (such as the set of all integers) does not 
have a smallest element.  

• In the statement of WOP, we can replace "positive" with 
"has a lower bound"

– Unlike integers, a set of rational numbers can have a lower bound 
but no smallest member:  {1/3, 1/5, 1/7, 1/9, … }

• Assuming the well-ordering principle, we will prove that the 
principle of mathematical induction is true.

The Well-ordering principle



• In this course, it will usually be a property of 
positive integers (or non-negative integers, or 
integers larger than some specific number).

• A property p(n) is a boolean statement about the 
integer n.  [ p: int boolean ]
– Example: p(n) could be "n is an even number". 
– Then p(4) is true, but p(3) is false. 

• If we believe that some property p is true for all 
positive integers, induction gives us a way of 
proving it.

What kind of things do we try to prove via
Mathematical Induction?



• To prove that p(n) is true for all n n0:

• Show that p(n0) is true.

• Show that for all k  n0, 

p(k) implies p(k+1).  

I.e, show that whenever p(k) is true, then 

p(k+1) is true also.

The Principle of Mathematical 
Induction



• To prove that p(n) is true 
for all n n0:

• Show that p(n0) is true.

• Show that for all k  n0, 

p(k) implies p(k+1). 

I.e, if p(k) is true, then 

p(k+1) is true also

Why does induction work?
(Informal look)

Pictures from Ralph 

Grimaldi's discrete 

math book.

First bullet, third picture.

Second bullet, second picture.

They all fall down!



• Next we focus on a formal proof of this, 
because:

– Some people may not be convinced by the 
informal one

– The proof itself illustrates some important proof 
techniques

Why does induction work?



• Let p be a property (p: int boolean).
• Hypothesis:

a) p(n0) is true.

b) For all k  n0, p(k) implies p(k+1).  I.e, if p(k) is true, 

then p(k+1) is true also

• Desired Conclusion: If n is any integer with n n0, then  p(n) is true. If 
we can prove this, then induction is a legitimate proof method.

• Proof that the conclusion follows from the hypothesis:

• Let S be the set {n n0 : p(n) is false}.  

• It suffices to show that S is empty. 

• We do it by contradiction.  

– Assume that S is non-empty and show that this leads to a contradiction.

Proof that induction works (Overview)



• Hypothesis:
a) p(n0) is true.

b) For all k  n0, p(k) implies p(k+1). 

Desired Conclusion: If n is any integer with n n0, then  p(n) is true. If this conclusion is 

true, induction is a legitimate proof method.

• Proof: Assume a) and b). Let S be the set {n n0 : p(n) is false}. 
We want to show that S is empty; we do it by contradiction.  

– Assume that S is non-empty. Then the well-ordering principle says that S has a 
smallest element (call it smin).
We try to show that this leads to a contradiction.

– Note that p(smin) has to be false. Why?

– smin cannot be n0, by hypothesis (a).  Thus smin must be > n0. Why?

– Thus smin-1  n0. Since smin is the smallest element of S, smin -1 cannot be an 
element of S. What does this say about p (smin – 1)?

• p(smin -1) is true.

– By hypothesis (b), using the k= smin -1 case, p(smin) is also true. 
This contradicts the previous statement that p(smin) is false.

– Thus the assumption that led to this contradiction (S is nonempty) 
must be false.  

– Therefore S is empty, and p(n) is true for all n n0.

Proof that induction works (more details)



• To prove that p(n) is true for all n n0:

a) Show that p(n0) is true.

b) Show that for all k  n0, 

p(k) implies p(k+1).  

I.e, show that whenever p(k) is true, then p(k+1) 

is true also.

• Let’s do it!

Recap: The Principle of Mathematical 
Induction



• To prove: 

• What is the base case?

• Induction hypothesis?

• What do we need to show in the induction step?

• Procedural matters:
– Start with one side of the equation/inequality and work toward the 

other side.

– DO NOT use the “ write what we want to prove and do the same 
thing to both sides of the equation to work backwards to what we 
are assuming" approach.

– Clearly indicate the step in which you use the induction hypothesis. 

Induction example 

Details on next slide



• To prove: 

• base case: n = 1.  Both sides of the equation are equal to 1
• Induction hypothesis?  Let k be any number that is  1.  Assume that 

 𝑖=1
𝑘 𝑖2= 

𝑘(𝑘+1)(2𝑘+1)

6
• What do we need to show in the induction step?

 𝑖=1
𝑘+1 𝑖2= 

(𝑘+1)((𝑘+1)+1)(2(𝑘+1)+1)

6
= 
(𝑘+1)(𝑘+2)(2𝑘+3)

6
– Start with the left side of  the equation/inequality and work toward the 

other side.
– DO NOT use the “ write what we want to prove and do the same thing to 

both sides of the equation to work backwards to what we are assuming" 
approach.

– Clearly indicate the step in which you use the induction hypothesis. 

Induction example 

More etails on next slide



Induction Example continued

 𝑖=1
𝑘+1 𝑖2 =  𝑖=1

𝑘 𝑖2+ (𝑘 + 1)2 [property of summation]

= 
𝑘(𝑘+1)(2𝑘+1)

6
+ (𝑘 + 1)2 [induction hypothesis]

= 
𝑘+1

6
𝑘 2𝑘 + 1 + 6(𝑘 + 1 )                   [factor]

= 
𝑘+1

6
2𝑘2 + 7𝑘 + 6 [Algebra]

= 
𝑘+1

6
𝑘 + 2)(2𝑘 + 3 [this is what we 

wanted to show]

Note that every step proceeds in the same direction. 

We never "do the same thing" to both sides of an 

equation. 



• When we write a recursive program, we make it work for the 
base case(s).  
– Then, assuming that it works for smaller values, we use the solution 

for a smaller value  to construct a solution for a larger value.  

• To prove that a property p(n) is true for all n>0 using (strong) 
mathematical induction, 
– we show that 

• it is true for the base case (typically n=0 or n=1), and that 

• the truth of p(k) for larger values of k can be derived from the truth 
of p(j) for all j with n0  j < k.

Induction is like Recursion



STRONG INDUCTION



• The following are sufficient to prove that p(n) is true for all 
n  n0

• (i) p(n0) is true.

• (ii) for every k>n0, if p(j) is true for all j with n0  j < k, then 
p(k) is also true.

• Note that we can prove this directly from the Well-
Ordering Principle.
– You may be asked to do that in the homework 

– The proof is almost the same as the proof of ordinary 
induction.

• Also note that ordinary induction is a special case of strong 
induction, in which we only assume the truth of p for j=k-1.

Strong induction



• How do we actually construct a proof by strong 
induction? 
To show that p(n) is true for all n  n0 :
– Step 0: Believe in the "magic."  

• You will show that it's not really magic at all.  But you have to 
believe.  

• If, when you are in the middle of an induction proof, you 
begin to doubt whether the principle of mathematical 
induction itself is true, you are sunk!  

• So even if you have some trouble understanding the proof of 
the principle of mathematical induction, you must believe its 
truth if you are to be successful in using it to prove things.

Proving Something Using Strong 
Induction



• How do we actually construct a proof by strong 
induction? 
To show that p(n) is true for all n  n0 :

• Step 1 (base case):   Show that p(n0) is true. 
– Depending on the nature of the induction step (ii), it 

may also be necessary to show some other base cases 
as well.  

– For example, an induction proof involving Fibonacci 
numbers may need two base cases, because the 
recursive part of the Fibonacci definition expresses 
F(n) as the sum of two previous values.

Proving Something Using Strong 
Induction



• How do we actually construct a proof by induction? 
To show that p(n) is true for all n  n0 :

• Step 2 (induction step)
– Let k be any number that is greater than n0.  

• You can't pick some specific k, you have to do this step for a generic k 
that is greater than n0.  

– Assume that p(j) is true for all j that are less than k (and also  n0, 
of course).  

– This is called the induction assumption, and is akin to the 
assumption that recursive calls to a procedure will work 
correctly.

– Then show that p(k) must also be true, using the induction 
assumption somewhere along the way.

Proving Something Using Strong 
Induction



• Every integer n≥1 is a product of zero or more prime integers
• Proof by strong induction:
• Base case. n=1 is a product of zero prime integers
• Induction step. Let k be an integer that is greater than 1   The 

induction assumption is that every positive integer smaller than 
k is a product of prime integers

• We must show that k is a product of prime integers
– If k is prime, then clearly k is the product of one prime integer 
– Otherwise k is a composite integer:  

• i.e., k = j*m, where integers  j and m are both greater than one

– Since j and m are both larger than 1,  j<k and m<k
– Thus by the induction assumption, m and j are both products of 

prime integers, and so k = jm is a product of prime integers 

• This would be very difficult to prove using ordinary induction

Example



• A Binary Tree is either

– empty,      or

– consists of:

• a distinguished node called the root, which contains an 
element, and 

• A left subtree TL, which is a binary tree

• A right subtree TR, which is a binary tree
root

TL

TR

Binary Tree: Recursive definition



Figure 18.20

Recursive view of the node height 

calculation: 

HT = Max (HL + 1, HR + 1)

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss      © 2002  Addison Wesley



Example: a property of binary trees

• Let H(T) be the height of a binary tree T.

• Let N(T) be the size (number of nodes) of T.

• Then N(T) ≤ 2H(T)+1-1.

• Proof by strong induction:

• Base case: H(T) = -1 (tree is empty).

– Left side of inequality is 0

– Right side is 2-1+1-1 = 0

– Inequality is true.



• A Binary Tree is either

– empty,      or

– consists of:

• a distinguished node called the root, which contains an 
element, and 

• A left subtree TL, which is a binary tree

• A right subtree TR, which is a binary tree
root

TL

TR

Binary Tree: Recursive definition



• A Binary Tree is either

– empty,      or

– consists of:

• a distinguished node called the root, which contains an 
element, and 

• A left subtree TL, which is a binary tree

• A right subtree TR, which is a binary tree
root

TL

TR

Binary Tree: Recursive definition



Induction step

Let T be a tree with j > 0 nodes.  Assume that the property is true 
for all smaller trees.  In particular, it is true for T's two subtrees. 
Thus

N(T) = 1 + N(TL)+N(TR)     [every node is the root or is in a subtree]

≤ 1 + 2h(TL)+1 - 1  + 2h(TR)+1 - 1                   [induction assumption]

= 2h(TL)+1 + 2h(TR)+1 - 1        [rearrange and combine constants]

≤ 2h(T) + 2h(T) -1 [height of tallest subtree is one less than height of T]

= 2(2h(T)) - 1   = 212h(T) – 1 = 2h(T)+1 – 1 [Algebra]


