4. Which permutation follows each of these in lexicographic order?
$\begin{array}{llll}183647520 & 183650247 & 471638520 & 471650238\end{array}$
5. Try to write an algorithm for generating the next permutation, with only the current permutation as input.
```
def next(self):
        "return current permutation and calculate next one"
            if not self.more:
            return False
        returnValue = list(self.current)
        i = self.n - 2
        while self.current[i] > self.current[i + 1]:
            i -= 1 # This avoids array-out-of-bounds because
        if i == - 1: # in Python, a[-1] means a[len(a)-1]
            self.more = False
        else:
            j = self.n - 1
            while self.current[i] > self.current[j]:
                j -= 1
            self.swap(i, j)
            self.reverse(i + 1, self.n - 1)
        return "".join([str(v) for v in returnValue])
```

6. If the lexicographic permutations of the numbers $[0,1,2,3,4]$ are numbered starting with 0 , what is the number of the permutation 14023 ? How do you get this?
$1 * 4!=24$, then (decrease-and-conquer) look at 3021
$3 * 3!=18$, then look at 021
$0 * 2!=0$, then look at 01
0 * 1 ! $=0$
$24+18=42$
7. Write an algorithm which, given a permutation of the numbers $0 . . n-1$, calculates its (zero-based) position in the lexicographic ordering of all of the permutations of $0 . . n-1$.
```
def permNumber(p):
    """assumes that p is a permutation of 0..n-1.
returns k such that p is the kth lexicographic
permutation of those numbers."""
p = [int(i) for i in p] # make a list of ints
n = len(p) # so we can do arithmetic
factList = [ft.get(i) for i in range (n-1,-1,-1)]
sum = 0
for i in range(n):
    sum += p[i] * factList[i]
    for j in range(i + 1, n):
                    if p[j] > p[i]:
                        p[j] -= 1
    return sum
```

8. In the lexicographic ordering of permutations of $[0,1,2,3,4,5]$, which permutation is number 541 ? How do you get this?
$p=[0,1,2,3,4,5] 5!=120.541=4(120)+61$. First number in the permutation is $p[4]=4$.
$p=[0,1,2,3,5] \quad 4!=24 \quad 61=2(24)+13$. Next number in permutation is $p[2]=2$.
$p=[0,1,3,5] \quad 3!=6 \quad 13=2(6)+1 . \quad$ Next number in permutation is $p[2]=3$.
$p=[0,1,5] \quad 1=0(2)+1$. Next number in permutation is $p[0]=0$.
$\mathbf{P}=[1,5] \quad 1=1(1)+0$
Code:
def kthPermutation (s, k):
```
"""return kth lexicographic permutation of elements in list s. Inverse of permNumber()"""
s = list(s)
result = []
factTable = [ft.get(i) for i in range (len(s)-1,-1,-1)]
for divisor in factTable:
    multiple = k // divisor
    k = k % divisor
    element = s[multiple]
    result.append(element)
    s.remove (element)
return result
```

