MA/CSSE 473 – Design and Analysis of Algorithms

Homework 10 (70 points total) Updated for Summer, 2016

Problems for enlightenment/practice/review (not to turn in, but you should think about them):

	•
6.1.1 [6.1.2]	(closest numbers in an array with pre-sorting)
6.1.2 [6.1.3]	(intersection with pre-sorting)
6.1.8 [6.1.10]	(open intervals common point)
6.1.11	(anagram detection)
6.2.8ab	(Gauss-Jordan elimination)
6.3.9	(Range of numbers in a 2-3 tree)
6.5.3	(efficiency of Horner's rule)
6.5.4	(example of Horner's rule and synthetic division)
7.1.7	(virtual initialization)

Problems to write up and turn in:

- 1. (10) 6.1.5 [6.1.7] (to sort or not to sort)
- 2. (10) 6.2.8c (compare Gaussian Elimination to Gauss-Jordan) You should compute and compare actual number of multiplications, not just say that both are $\Theta(n^3)$. Use division when you compare.
- 3. (6) 6.3.7 (2-3 tree construction and efficiency) Show the steps in the construction and show your calculation of the average key comparisons.
- 4. (3) 6.3.8 (2-3 tree vs. binary tree). Include a proof if it is true, or a counterexample if it is false.
- 5. (3) 6.3.9 (range of a 2-3 tree)
- 6. (20) Not in book (sum of heights of nodes in a full tree) In this problem, we consider completely full binary trees with N nodes and height H (so that $N = 2^{H+1} 1$)
 - (a) (5 points) Show that the sum of the heights of all of the nodes of such a tree can be expressed as $\sum_{k=0}^{H} k 2^{H-k}$.
 - (b) (10 points) Prove by induction on H that the above sum of the heights of the nodes is N H 1. You may base your proof on the summation from part (a) (so you don't need to refer to trees at all), **or** you may do a "standard" binary tree induction based on the heights of the trees, using the definition that a non-empty binary tree has a root plus left and right subtrees. I find the tree approach more straightforward, but you may use the summation if you prefer.
 - (c) (3 points) What is the big Θ estimate for the sum of the *depths* of all of the nodes in such a tree?
 - (d) (2 points) How does the result of parts (b) and (c) apply to Heapsort analysis?

Example of height and depth sums: Consider a full tree with height 2 (7 nodes).

Heights: root:2, leaves: 0. Sum of all heights: 1*2 + 2*1 + 4*0 = 3.

Depths: root: 0, leaves: 2. Sum of all depths: 1*0 + 2*1 + 4*2 = 10.

[Response to a 201640 student question on Piazza: You should compare the naive approach to building the heap in preparation for heapsort (inserting the elements one at a time, Levitin calls it *heaptopdown*) vs. the more efficient approach (Levitin calls it *heapbottomup*) approach. Weiss has more details in Chapter 21. Next, what is the impact of the heap-building algorithm in the running time of the entire heapsort algorithm?

- 7. (10) 6.4.12 [6.4.11] (spaghetti sort)
- 8. (4) 6.5.10 [6.5.9] (Use Horner's rule for this particular case?)
- 9. (10) 7.1.6 (ancestry problem). You may NOT assume any of the following:
 - The tree is binary
 - The tree is a search tree (i.e. that the elements are in some particular order)
 - The tree is balanced in any way.