MA/CSSE 473

Day 36 ® o

“~>
=" =" ©

Kruskal proof recap

Prim Data Structure
and detailed
algorithm.

Recap: MST lemma

Let G be a weighted connected graph with a MST T;
let G’ be any subgraph of T, and let C be any connected
component of G'.
If we add to C an edge e=(v,w) that has minimum-
weight among all edges that have one vertex in C and
the other vertex not in C,

then G has an MST that contains the union of G’ and e.

[WLOG v is the vertex of e that is in C, and w is not in C]

Proof: We did it last time v

Recall Kruskal’s algorithm

e To find a MST:

e Start with a graph containing all of G’s n
vertices and none of its edges.

e fori=1ton—1:

— Among all of G’s edges that can be added without
creating a cycle, add one that has minimal weight.

Does this algorithm produce an MST for G?

Does Kruskal produce a MST?

e Claim: After every step of Kruskal’s algorithm, we
have a set of edges that is part of an MST

e Base case ... Work on the quiz questions

) with one or two other students
e Induction step:

— Induction Assumption: before adding an edge we have a
subgraph of an MST

— We must show that after adding the next edge we have a
subgraph of an MST
— Suppose that the most recently added edge is e = (v, w).

— Let C be the component (of the “before adding e” MST
subgraph) that contains v
¢ Note that there must be such a component and that it is unique. 4

— Are all of the conditions of MST lemma met? =" @

— Thus the new graph is a subgraph of an MST of G v

Does Prim produce an MST?

e Proof similar to Kruskal.
¢ |t's done in the textbook

Recap: Prim’s Algorithm for
Minimal Spanning Tree

e Start with T as a single vertex of G (which is a
MST for a single-node graph).
e fori=1ton—-1:
— Among all edges of G that connect a vertexin T to
a vertex that is not yet in T, add to T @ minimum-
weight edge.

At each stage, T is a MIST for a connected subgraph
of G. A simple idea; but how to do it efficiently?

Many ideas in my presentation are from Johnsonbaugh, Algorithms, T
2004, Pearson/Prentice Hall v

Main Data Structure for Prim

e Start with adjacency-list representation of G

e Let V be all of the vertices of G, and let V; the
subset consisting of the vertices that we have
placed in the tree so far

e We need a way to keep track of "fringe" edges

— i.e. edges that have one vertex in V;
and the other vertexin V-V,

* Fringe edges need to be ordered by edge weight
— E.g., in a priority queue

e What is the most efficient way to implement a e
priority queue? o

Prim detailed algorithm step 1

* Create an indirect minheap from the adjacency-

list representation of G

— Each heap entry contains a vertex and its weight

— The vertices in the heap are those notyetin T

— Weight associated with each vertex v is the minimum
weight of an edge that connects v to some vertexin T

— If there is no such edge, v's weight is infinite

e |nitially all vertices except start are in heap, have infinite
weight

— Vertices in the heap whose weights are not infinite are
the fringe vertices

— Fringe vertices are candidates to be the next vertex °

(with its associated edge) added to the tree v

Prim detailed algorithm step 2

e Loop:
— Delete min weight vertex w from heap, add itto T

— We may then be able to decrease the weights

associated with one or more vertices that are adjacent
tow

Indirect minheap overview

e We need an operation that a standard binary
heap doesn't support:
decrease(vertex, newWeight)
— Decreases the value associated with a heap element
— We also want to quickly find an element in the heap
¢ Instead of putting vertices and associated edge
weights directly in the heap:
— Put them in an array called key[]
— Put references to these keys in the heap

Indirect Min Heap methods

operation description run time

del() delete and return the (location in key[]of ©(log n)
the) minimum element

ey I(w)

e weight associated with vertex w
(minimum weight of an edge from that
vertex to some adjacent vertex that is in the

Indirect MinHeap Representation
« 15]70] 7 [85[92/10]19(63] pray the tree

» diagram of
i 2]8[1[7[5[3[6]4] the heap

utof

= 3]1]6][8]5]7][4]2]
outof[i] tells us which key is in location i in the heap
into[j] tells us where in the heap key|j] resides
into[outof[i]] =i, and outof[into[j]] =j.

To swap the 15 and 63 (not that we'd want to do this):

temp = outof[2]

outof[2] = outof[4]

outof[4] = temp

temp = into[outof[2]] -
into[outof[2]] = into[outof[4]] =" =" e
into[outof[4]] =

temp v

MinHeap class, part 1

“class MinHeap:

3 mrr Implements an indirect heap so it can efficiently support
the Isin and Decrease operations that are not
supported efficiently by an ordinary binary heap."""

def __init__{self, kevy) :
mmrkey: 1ist of values from which we build initial heap”""
self.n = len(key)-1
self.key = key
self.into = [i for 1 in range(self.n + 1)]
self.outof = [1 for 1 in range(self.n + 1)]
self.heapify()

def heapify(seIlf):
for i in range(self.n//2, 0, -1):
self.siftdown(i, self.n)

MinHeap class, part 2

def siftdown(s=l1f, i, n):

nrn sift down for a minHeap. i is the
heap index, outof[i] is index into key array)"""
s = self.outof[i]

temp = self.key[s]
while 2*%i <= n:
c = 2%1i # ¢ is for child
if ¢ €« n and self.key[self.outofl[ct+l]] < A\
self.key[self.outof[c]]:
c += 1
if self.key[self.outof[c]] < temp:
self.outof[i] = self.outoflc]
self.into[self.outof[i]] = i
else:
break
i=2c
self.outof[i] = s

self.into[s] = 1i i

MinHeap class, part 3

def delete(s=sIf) :
"mrdelete the mimimum value and return it"""
result = self.outof[1l]
temp = self.outof[l]
self.outof[1l] = self.outof[self.n]
self.into[self.cutof[1]] = 1
self.outcf[self.n] = temp
self.into[temp] = self.n
self.n —= 1
self.siftdown(l, se=lf.n)
return result

def isIn(self, w):
mer returns True iff key[w)] is in this heap """
return self.into[w] <= self.n

def keyVal (s=lf, w): ® e
mern returns the weight corresponding to w'"'" =" e

return self.key[w] ’

MinHeap class, part 4

def decrease(sslf, w, newWeight) :
mer change the weight corresponding to
vertex w to newWeight (which must be no
larger than its current weight) """
p is for parent, c is for child
self.key[w] = newWeight
c = gelf.into[w]
p =c//2
while p >= 1:
if self.keylself.cutof[p]] <= newWeight:
break
self.outof[c] = s=lf.outofp]
self.into[self.outof[c]] = c

c =p
p =c//2 !
self.outof[c] = w ‘:

self.into[w] = c l'

Prim Algorithm

INFINITY = 1234567850
VERTEX = 0 # An edge is a list of two numbers:
WEIGHET = 1 4§ These are what the subscripts (0 and 1) mean.
def prim(adj, start):
mrn parent [v] = parent of v in MST rooted at start """
n = adj.length() # wvertices in graph
key = [None]l + [INFINITY]*n +# later they will be decreased
parent = [None] + [0]*n # placeholders
keylstart] = 0
parent [start] = 0
heap = MinHeap (key) # non-infinity wvalue in heap represents fringe vertex

for 1 in range(l, n+l):
v = heap.delete ()
edges = adj.getlList(wv) # =all vertices adjacent to v
for edge in edges: # an edge is a list of: other wvertex and weight
w = edge [VERTEX]
if heap.isIn(w) and edge[WEIGHT] < heap.keyval (w):
parent[w]l = v
heap.decrease (w, edge[WEIGHT])
return parent

def edgeListFromParentArray(parent):
result = []
for 1 in range(l, len(parent);):
if parent([i] > 0:
result.append([parent[i], 11}
return result

AdjacencyListGraph class

clazs AdjancencyListGraph:
def _ init__ (self, adjlist):
gelf.vertexlist = [v[0] for v in adjlist]
gelf.adjacencylist = [Vertex(v) for v in self.vertexlist]
for v in adjlist:
gelf.getVertex({v[0], w[1]}

def getList({zelf, v):
for ver in selif.adjacencylist:
if ver.v == vi
return wver.adj
return None

def length(self):
return len({self.adjacencylList)

def setvertexigelf, v, vList):
i = gelf.vertexlist.index (v}
for v in vList:
if w[0] not in self.vertexlList:
print "Illegal vertex in graph"
exit ()
self.adjacencylList([i].add{v)

Preview: Data Structures for Kruskal
A sorted list of edges (edge list, not adjacency list)
Disjoint subsets of vertices, representing the
connected components at each stage.

— Start with n subsets, each containing one vertex.
— End with one subset containing all vertices.
Disjoint Set ADT has 3 operations:

— makeset(i): creates a singleton set containing i.

— findset(i): returns a "canonical" member of its subset.

e |.e, ifiand jare elements of the same subset,
findset(i) == findset(j)

— union(i, j): merges the subsets containingiandjintoa ® e
- g

single subset. =~

10

