

Recap: MST lemma

Let G be a weighted connected graph with a MST T; let G' be any subgraph of T, and let C be any connected component of G'.

If we add to C an edge e=(v,w) that has minimumweight among all edges that have one vertex in C and the other vertex not in C,

then G has an MST that contains the union of G' and e.

[WLOG v is the vertex of e that is in C, and w is not in C]

Proof: We did it last time

Recall Kruskal's algorithm

- To find a MST:
- Start with a graph containing all of G's n vertices and none of its edges.
- for i = 1 to n 1:
 - Among all of G's edges that can be added without creating a cycle, add one that has minimal weight.

Does this algorithm produce an MST for G?

Does Kruskal produce a MST?

- Claim: After every step of Kruskal's algorithm, we have a set of edges that is part of an MST
- Base case ...

Work on the quiz questions with one or two other students

- Induction step:
 - Induction Assumption: before adding an edge we have a subgraph of an MST
 - We must show that after adding the next edge we have a subgraph of an MST
 - Suppose that the most recently added edge is e = (v, w).
 - Let C be the component (of the "before adding e" MST subgraph) that contains v
 - Note that there must be such a component and that it is unique.
 - Are all of the conditions of MST lemma met?
 - Thus the new graph is a subgraph of an MST of G

Does Prim produce an MST?

- Proof similar to Kruskal.
- It's done in the textbook

Recap: Prim's Algorithm for Minimal Spanning Tree

- Start with T as a single vertex of G (which is a MST for a single-node graph).
- for i = 1 to n 1:
 - Among all edges of G that connect a vertex in T to a vertex that is not yet in T, add to T a minimumweight edge.

At each stage, T is a MST for a connected subgraph of G. A simple idea; but how to do it efficiently?

Many ideas in my presentation are from Johnsonbaugh, *Algorithms*, 2004, Pearson/Prentice Hall

Main Data Structure for Prim

- Start with adjacency-list representation of G
- Let V be all of the vertices of G, and let V_T the subset consisting of the vertices that we have placed in the tree so far
- We need a way to keep track of "fringe" edges
 - i.e. edges that have one vertex in V_T and the other vertex in $V V_T$
- Fringe edges need to be ordered by edge weight
 E.g., in a priority queue
- What is the most efficient way to implement a priority queue?

Prim detailed algorithm step 1

- Create an indirect minheap from the adjacencylist representation of G
 - Each heap entry contains a vertex and its weight
 - The vertices in the heap are those not yet in T
 - Weight associated with each vertex v is the minimum weight of an edge that connects v to some vertex in T
 - If there is no such edge, v's weight is infinite
 - Initially all vertices except start are in heap, have infinite weight
 - Vertices in the heap whose weights are not infinite are the *fringe vertices*
 - Fringe vertices are candidates to be the next vertex (with its associated edge) added to the tree

Prim detailed algorithm step 2

• Loop:

- Delete min weight vertex w from heap, add it to T
- We may then be able to decrease the weights associated with one or more vertices that are adjacent to w

Indirect minheap overview

• We need an operation that a standard binary heap doesn't support:

decrease(vertex, newWeight)

- Decreases the value associated with a heap element
- We also want to quickly find an element in the heap
- Instead of putting vertices and associated edge weights directly in the heap:
 - Put them in an array called key[]
 - Put references to these keys in the heap

Indirect	Min Hear	p methods
----------	----------	-----------

operation	description	run time
init(key)	build a MinHeap from the array of keys	⊖(n)
del()	delete and return the (location in key[] of the) minimum element	Θ(log n)
isIn(w)	is vertex w currently in the heap?	Θ(1)
keyVal(w)	The weight associated with vertex w (minimum weight of an edge from that vertex to some adjacent vertex that is in the tree).	Θ(1)
decrease(w, newWeight)	changes the weight associated with vertex w to newWeight (which must be smaller than w's current weight)	Θ(log n)
	4.12000000122000001220000000000000000000	00

Indirect MinHeap Representation

key array		15	70	7	85	92	10	19	63
	0	1	2	3	4	5	6	7	8
into array		2	8	1	7	5	3	6	4
outof		3	1	6	8	5	7	4	2

Draw the tree diagram of the heap

- outof[i] tells us which key is in location i in the heap
- into[j] tells us where in the heap key[j] resides
- into[outof[i]] = i, and outof[into[j]] = j.
- To swap the 15 and 63 (not that we'd want to do this):

```
temp = outof[2]
outof[2] = outof[4]
outof[4] = temp
```

temp = into[outof[2]]
into[outof[2]] = into[outof[4]]

into[outof[4]] = temp

MinHeap class, part 1

```
class MinHeap:

""" Implements an indirect heap so it can efficiently support the Isin and Decrease operations that are not supported efficiently by an ordinary binary heap."""

def __init__(self, key):
    """key: list of values from which we build initial heap"""
    self.n = len(key)-1
    self.key = key
    self.into = [i for i in range(self.n + 1)]
    self.outof = [i for i in range(self.n + 1)]
    self.heapify()

def heapify(self):
    for i in range(self.n//2, 0, -1):
        self.siftdown(i, self.n)
```

MinHeap class, part 2

```
def siftdown(self, i, n):
    """ sift down for a minHeap. i is the
    heap index, outof[i] is index into key array)"""
    s = self.outof[i]
   temp = self.key[s]
   while 2*i <= n:
        c = 2*i
                # c is for child
        if c < n and self.key[self.outof[c+1]] < \</pre>
                     self.key[self.outof[c]]:
            c += 1
        if self.key[self.outof[c]] < temp:</pre>
            self.outof[i] = self.outof[c]
            self.into[self.outof[i]] = i
        else:
            break
        i = c
        self.outof[i] = s
        self.into[s] = i
```

MinHeap class, part 3

```
def delete(self):
    """delete the mimimum value and return it"""
    result = self.outof[1]
    temp = self.outof[1]
    self.outof[1] = self.outof[self.n]
    self.into[self.outof[1]] = 1
    self.outof[self.n] = temp
    self.into[temp] = self.n
    self.n -= 1
    self.siftdown(1, self.n)
    return result
def isIn(self, w):
    """ returns True iff key[w] is in this heap """
    return self.into[w] <= self.n
def keyVal(self, w):
    """ returns the weight corresponding to w"""
    return self.key[w]
```

MinHeap class, part 4

```
def decrease(self, w, newWeight):
    """ change the weight corresponding to
    vertex w to newWeight (which must be no
    larger than its current weight) """
    # p is for parent, c is for child
    self.key[w] = newWeight
    c = self.into[w]
   p = c//2
   while p >= 1:
        if self.key[self.outof[p]] <= newWeight:
            break
        self.outof[c] = self.outof[p]
        self.into[self.outof[c]] = c
        c = p
        p = c//2
    self.outof[c] = w
    self.into[w] = c
```

```
Prim Algorithm
VERTEX = 0 # An edge is a list of two numbers:
{\tt WEIGHT} = 1 # These are what the subscripts (0 and 1) mean.
def prim(adj, start):
     "" parent[v] = parent of v in MST rooted at start """
                             # vertices in graph
   n = adi.length()
   key = [None] + [INFINITY]*n # later they will be decreased
    parent = [None] + [0]*n
                               # placeholders
    key[start] = 0
   parent[start] = 0
   heap = MinHeap(key) # non-infinity value in heap represents fringe vertex
    for i in range(1, n+1):
       v = heap.delete()
       edges = adj.getList(v) # all vertices adjacent to v
       for edge in edges: # an edge is a list of: other vertex and weight
           w = edge[VERTEX]
           if heap.isIn(w) and edge[WEIGHT] < heap.keyVal(w):</pre>
               parent[w] = v
               heap.decrease(w, edge[WEIGHT])
    return parent
                  def edgeListFromParentArray(parent):
                       result = []
                       for i in range(1, len(parent)):
                           if parent[i] > 0:
                                result.append([parent[i], i])
                       return result
```

AdjacencyListGraph class class AdjancencyListGraph: def __init__(self, adjlist): self.vertexList = [v[0] for v in adjlist] self.adjacencyList = [Vertex(v) for v in self.vertexList] for v in adjlist: self.setVertex(v[0], v[1]) def getList(self, v): for ver in self.adjacencyList: if ver.v == v: return ver.adj return None def length(self): return len(self.adjacencyList) def setVertex(self, v, vList): i = self.vertexList.index(v) for v in vList: if v[0] not in self.vertexList: print "Illegal vertex in graph" exit() self.adjacencyList[i].add(v)

Preview: Data Structures for Kruskal

- A sorted list of edges (edge list, not adjacency list)
- Disjoint subsets of vertices, representing the connected components at each stage.
 - Start with n subsets, each containing one vertex.
 - End with one subset containing all vertices.
- Disjoint Set ADT has 3 operations:
 - makeset(i): creates a singleton set containing i.
 - findset(i): returns a "canonical" member of its subset.
 - I.e., if i and j are elements of the same subset, findset(i) == findset(j)
 - union(i, j): merges the subsets containing i and j into a single subset.