MA/CSSE 473
Day 29 ® o

L1
e ' O
<

Optimal BSTs

MA/CSSE 473 Day 29

e Student Questions?
e Expected Lookup time in a Binary Search Tree
e Optimal static Binary Search Tree

Recap: Optimal linked list order

Suppose we have n distinct data items
X1, Xy, vy X, iN a linked list.

vy X,
Also suppose that we know the probabilities p,, p,, ...,
p, that each of the items is the one we'll be searching

for.
What is the expected number of probes before a
successful search completes?
- X ip
How can we minimize this number?

— Place the elements in the list in decreasing order of
probability.

What about an unsuccessful search?

Optimal Binary Search Trees

Suppose we have n distinct data keys K;, K,, ...,
K, (in increasing order) that we wish to arrange
into a Binary Search Tree

This time the expected number of probes for a
successful or unsuccessful search depends on
the shape of the tree and where the search
ends up

This discussion follows Reingold and Hansen,
Data Structures. An excerpt on optimal static
BSTS is posted on Moodle. |use a,and b, _.-

where Reingold and Hansen use a; and B, §8#

Recap: Extended binary search tree

e |t's simplest to describe this
problem in terms of an
extended binary search tree
(EBST): a BST enhanced by
drawing "external nodes" in
place of all of the null pointers
in the original tree

e Formally, an Extended Binary Tree (EBT) is either
— an external node, or
— an (internal) root node and two EBTs T, and T,

¢ In diagram, Circles = internal nodes, Squares = external
nodes

e |t's an alternative way of viewing a binary tree

¢ The external nodes stand for places where an unsuccessful
search can end or where an element can be inserted Xk

e An EBT with n internal nodes has ___external nodes =T
(We proved this by induction earlier in the term) v

See Levitin:
page 183 [141]

What contributes to the expected
number of probes?

e Frequencies, depth of node

e For successful search, number of probes is
one more than the depth of the
corresponding internal node

e For unsuccessful, number of probes is
equal to the depth of the corresponding
external node

Optimal BST Notation

e Keysare K;, K,, ..., K,

e Letv be the value we are searching for

e Fori=1,..,n, let a, be the probability that v is key K;

e Fori=1,..,n-1, let b, be the probability that K. <v <K,

— Similarly, let b, be the probability that v < K,
and b, the probability that v > K,

e Note that n n

Da+yb=1
i=1 i=0

e We can also just use frequencies instead of probabilities
when finding the optimal tree (and divide by their sum to
get the probabilities if we ever need them). That is what
we will do. -

= ©®

e Should we try exhaustive search of all -

possible BSTs? Answer on next slide . Y “- F

Aside: How many possible BST's

e Given distinct keys K; <K, < ... <K, how many
different Binary Search Trees can be
constructed from these values? \when n=20

e Figure it out forn=2, 3,4, 5 c(n) is
e Write the recurrence relation almost 10%
e Solution is the Catalan number c(n)

C(n){zn) 1 (2n)! =ll[n+kzn3/42f”

n)n+l ni(n+1)! +3 k
e Verifyforn=2, 3, 4,5.

Wikipedia Catalan article has c(n)—[Z”JL -
five different proofs of n)n+l v

Recap: Optimal Binary Search Trees

Suppose we have n distinct data items K;, K,, ..., K, (in

RN
increasing order) that we wish to arrange into a Binary
Search Tree

This time the expected number of probes for a successful or
unsuccessful search depends on the shape of the tree and
where the search ends up

Let v be the value we are searching for
Fori=1, ..,n, let a, be the probability that v is item K;
Fori=1, ..,n-1, let b, be the probability that K, <v <K,

Similarly, let b, be the probability that v < K,
and b, the probability that v>K,

Note that 231+Zb -1

but we can also just use frequencies when finding
the optimal tree (and divide by their sum to get "o
the probabilities if needed) v

What not to measure

Earlier, we introduced the notions of external
path length and internal path length

e These are too simple, because they do not take
into account the frequencies.

e We need weighted path lengths.

Weighted Path Length

C(T) =Y a[1+depth(x)]+ Y [depth(y,)]

e |f we divide this by Za, + Xb, we get the average
search time.
Note: g, ..., ¥n

e We can also define it recursively: are the external

e C(O)=0. IfT= [, then nodes of the tree

C(T) = C(T,) + C(T) + XZa, + Xb,, where the
summations are over all a, and b, for nodes in T
* It can be shown by induction that thesetwo ___ 2 ¢

definitions are equivalent (good practice v

problem).

Example

e Frequencies of vowel occurrence in English
e: AEIOU

e a's: 32, 42, 26, 32, 12
eb's: 0 34, 38 58 95 21

e Draw a couple of trees (with E and | as roots),
and see which is best. (sum of a'sand b's is
390).

Strategy

e \We want to minimize the weighted path length

* Once we have chosen the root, the left and
right subtrees must themselves be optimal
EBSTs

e We can build the tree from the bottom up,
keeping track of previously-computed values

Intermediate Quantities

* Cost: Let C; (for 0 <i<j<n) be the cost of an
optimal tree (not necessarily unique) over the
frequencies b;, a;,,, b;,y, ..a;, b;. Then

* C;=0,and C, _mln(C,kl+CkJ)+ZJ:b +ZJ:aT

e This is true since the subtrees of an optimal
tree must be optimal

J To simplify the computation, we define

W, =b, and W; =W, ., + a, + b; for i<j.

. NotethatW ='b. +aI+1 +a +b;, and so

e C.=0,and C W +m|n(CIk 1+ij)

. Let R (root of best free from i to j) be a value
of k that minimizes -
Ci 1 * G in the above formula e

i

Code

initialize the main diagonal
for i in range(n + 1):

R[i][i] = 1
WILi] [i] = bIli]
Draw this cell of the tabkle in the given window.

drawSquare (i, i, W[i]l[i], C[i][i], R[i][i], win, indent, sguareSize)

Now populate each of the n upper diagonals:
for d in range(l, n+l): # £ill in this diagonal

The previcus diagonals are already filled in.
for i in range(n - 4 + 1):
j =1+ d; # on the dth diagonal, j — 1 = d
opt = 1 + 1 # until we find a better one
for k in range(i+2, j+1):
if c[il[k-11+C[k]1[3] < cl[i] [opt-1]+Clopt] [J]:
opt = k
R[i]1[Jj] = opt
W[il[3] = WI[il[3-11 + al3j]l + bIljl
C[i1[3j] = c[il[opt-1] + Clopt][j] + W[il[]j]
Draw this cell of the table in the given window.

drawSquare (i, j, W[il1[jl, Cc[i]1[J]1, R[i]1[]j], win, indent, squareSize)

Results

ROO: 0| RrROL: 1| ROZ2: 2 | RO3: 2 | RO4: 3 | rROG: 4

coo: 0| c0l: 66 |c02: 212 | c03: 418 | cO0d: 754 | CcO5: 236

woo: 0| wol: &6 |wW02: 146 | WO3: 220 | wo4d: 357 | WwO5: 390 o ConStrUCted

R11: 1| R1Z2: 2 | R13: 3 | R14: 3 [R15: 4

by diagonals,
Wll: 34 | W12: 114 | Wl3: 198 | Wld: 325 | Wl5: 358 from main

C1l1: o cl2: 114 Ccl3: 312 Ccld: a24 C15: 798 .
diagonal
RZZ2: 2 RZ3: 3 RZ24: 4 R25: 4
W2Z: 38 | W23: 122 | W24: 249 | W25: 282 upward
c22: 0| c23: 122 | c24: 371 | C25: 532
e What is the
R33: 3 | R34: 4 | R35: 4
W33: 58 | w34: 185 | w35: 218 H
HOW :O t th Cc33: 0 | ¢c34: 185 | C35: 346 Optlmal
construct the
1 Rdd: 4 | R45: 5 tree?
optimal tree? ; ;
wad: 95 | w45: 128
i Ccdd: 0 | cd45: 128
Analysis of the
. RLG: 5
algorithm? veer a1

Running time

e Most frequent statement is the comparison
if C[i][k-1]+C[k][j] < C[i]l[opt-1]+C[opt][j]:

e How many times L [i=e) (B0
- 2221
does it execute: _ ,
d=1 i=0 k=i+2
simplify(sum(sum{sum{l, k=i+2. . .i+d), i=0. .n-d),d=1. .n)};
1 1 =z
——n+—-n
& &

Do what seems best at the moment ...

GREEDY ALGORITHMS

€

Greedy algorithms

e Whenever a choice is to be made, pick the one that
seems optimal for the moment, without taking future
choices into consideration

— Once each choice is made, it is irrevocable

e For example, a greedy Scrabble player will simply
maximize her score for each turn, never saving any
“good” letters for possible better plays later
— Doesn’t necessarily optimize score for entire game

e Greedy works well for the "optimal linked list
with known search probabilities" problem, and
reasonably well for the "optimal BST" problem

— But does not necessarily produce an optimal tree 2 -

Greedy Chess

e Take a piece or pawn whenever you will not
lose a piece or pawn (or will lose one of lesser
value) on the next turn

e Not a good strategy for this game either

10

Greedy Map Coloring

e On a planar (i.e., 2D Euclidean) connected map,
choose a region and pick a color for that region

e Repeat until all regions are colored:
— Choose an uncolored region R that is adjacent?! to at
least one colored region
e If there are no such regions, let R be any uncolored region

— Choose a color that is different than the colors of the
regions that are adjacent to R

— Use a color that has already been used if possible

e The result is a valid map coloring, not necessarily
with the minimum possible number of colors

1Two regions are adjacent if they have a common edge

Spanning Trees for a Graph
@)

1

graph wi(T) =6 wiTz) =9 w(Tg) =8

FIGURE 9.1 Graph and its spanning trees; T} is the minimum spanning tree

11

Minimal Spanning Tree (MST)

Suppose that we have a connected network G
(a graph whose edges are labeled by numbers,
which we call weights)

We want to find a tree T that

— spans the graph (i.e. contains all nodes of G).

— minimizes (among all spanning trees) 8 2
the sum of the weights of its edges. 4 __
Is this MST unique? A o "

1 2

One approach: Generate all spanning trees and
determine which is minimum
Problems:
— The number of trees grows exponentially with N
— Not easy to generate -
— Finding a MST directly is simpler and faster

More details soon

{

Huffman's algorithm

Goal: We have a message that co9ntains n
different alphabet symbols. Devise an
encoding for the symbols that minimizes the
total length of the message.

Principles: More frequent characters have
shorter codes. No code can be a prefix of
another.

Algorithm: Build a tree form which the codes
are derived. Repeatedly join the two lowest-
frequency trees into a new tree.

8-10

12

