MA/CSSE 473
Day 28 ® o

Dynamic > -~

: C=
~>
Programming > <>

Binomial Coefficient

Warshall's algorithm

Student questions?

No handout today

Announcements:

HW 12 is now available.

Due next Thursday.

Exam Tuesday, Nov 4

In my office today: Hours 6, 9, first half of 10.

B-trees
e We will do a quick overview.

e For the whole scoop on B-trees (Actually B+
trees), take CSSE 333, Databases.

e Nodes can contain multiple keys and pointers
to other to subtrees

B-tree nodes

e Each node can represent a block of disk storage;
pointers are disk addresses

e This way, when we look up a node (requiring a disk
access), we can get a lot more information than if we
used a binary tree

e In an n-node of a B-tree, there are n pointers to
subtrees, and thus n-1 keys

e ForallkeysinT,, K<T, <K,
K, is the smallest key that appearsin T,

‘po K 91‘ oo ‘F‘m‘ Ki‘pi‘ R [PR [e | P
n

® @

o w8

To i T Tz Tha v
EIGURE 7.7 Parental node of 5 B-tree

B-tree nodes (tree of order m)

e All nodes have at most m-1 keys

e All keys and associated data are stored in special leaf
nodes (that thus need no child pointers)

e The other (parent) nodes are index nodes

e All index nodes except the root have
between| m/2]and m children

e root has between 2 and m children

e All leaves are at the same level

e The space-time tradeoff is because of duplicating some
keys at multiple levels of the tree

e Especially useful for data that is too big to fit
in memory. Why? B

e Example on next slide v

Example B-tree(order 4)

4,7,10] [11,14] 15,16, 19] | 20, 24] | 25,"28| [34, 38] |40, 43, 46] | 51, 55]|60, 68, 80|

FIGURE 7.8 Example of a B-tree of order 4

=
FIGURE 7.9 B-tree obtained after inserting 65 into the B-tree in Figure 7.8 v

Search for an item

e Within each parent or leaf node, the keys are
sorted, so we can use binary search (log m), which
is a constant with respect to n, the number of
items in the table

e Thus the search time is proportional to the height
of the tree

* Max height is approximately log; ., n

e Exercise for you: Read and understand the
straightforward analysis on pages 273-274

e Insert and delete are also proportional to height
of the tree

Dynamic programming

e Used for problems with recursive solutions and
overlapping subproblems

e Typically, we save (memoize) solutions to the
subproblems, to avoid recomputing them.

e You should look at the simple examples from
Section 8.1 in the textbook.

Dynamic Programming Example

e Binomial Coefficients:

e C(n, k) is the coefficient of x in the expansion of
(1+x)"

¢ C(n,0)=C(n, n)=1.

e [fO0<k<n,C(n, k)=C(n-1, k) + C(n-1, k-1)

e Can show by induction that the "usual" factorial

formula for C(n, k) follows from this recursive
definition.

— A good practice problem for you
e |f we don't cache values as we compute them, this

can take a lot of time, because of duplicate
(overlapping) computation. .y -

Computing a binomial coefficient

Binomial coefficients are coefficients of the binomial formula:

(a+b)"=C(n,0)a"b® + ...+ C(nk)a™*bk+ ...+ C(n,n)a®"

Recurrence: C(n,k) = C(n-1,k) + C(n-1,k-1) forn>k>0
C(n,0)=1, C(n,n)=1 forn=>0

Value of C(n,k) can be computed by filling in a table:

01 2... k1 k
0] 1
1 11
n-1 C(n-1,k-1) C(n-1,k) ® o
n C(n,k) _-':..f': ®

Computing C(n, k):
ALGORITHM Binomial(n. k)

/IComputes C(n. k) by the dynamic programming algorithm
//Input: A pair of nonnegative integers n > k > 0
//Output: The value of C(n, k)
fori < Otondo
for j < 0 to min(i, k) do
if j=0o0r;j=i
Cli, jl <1

else C[i, j]« Cli =1, j—=1]+C[i — 1, j]

return C|n, k]

Time efficiency: ©(nk)
Space efficiency: ©(nk)

If we are computing C(n, k) for many different n and ":_-_-"-' -
k values, we could cache the table between calls. v

Transitive closure of a directed graph

e We ask this question for a given directed graph G: for each of
vertices, (A,B), is there a path from Ato B in G?

e Start with the boolean adjacency matrix A for the n-node
graph G. A[il[j]is 1 if and only if G has a directed edge from
node i to node j.

¢ The transitive closure of G is the boolean matrix T such that
T[il[j]1 is 1 iff there is a nontrivial directed path from node i to
node j in G.

¢ |f we use boolean adjacency matrices, what does M2
represent? M3?

¢ In boolean matrix multiplication, + stands for or, and * stands
for and (3)

o a b ¢ d b ¢
‘ 1 0 11
0 1 11

A= 0 0 7= 0 0

0 0 11

(a) (b) (c)

FIGURE 8.2 (a) Digraph. (b) Its adjacency matrix. (c) Its transitive closure.
.

Qo oo
- O O O
== -
[T > T = 2 <)
-0 = =W
- O = =0

Transitive closure via multiplication

e Again, using + for or, we get
T=M+M2 + M3+ ...
e Can we limit it to a finite operation?
e We can stop at M1,
— How do we know this?

e Number of numeric multiplications for solving
the whole problem?

Warshall's algorithm

Similar to binomial coefficients algorithm

Assumes that the vertices have been numbered
1,2,..,n
Define the boolean matrix R as follows:

— RWVi][j] is 1 iff there is a path in the directed graph
Vi=EW, = Wy —> .. —> W=V, where
e s>=1, and

e forall t=1,..,5s-1, w,isv,, forsomem <k
i.e, none of the intermediate vertices are numbered higher
than k

Note that the transitive closure T is R(M . -

Rk example

o RKiis 1 iff there is a path in the directed
graph
ViEWp = Wy —> o > W=V, where
—-s>1, and
—forallt=2,..,s-1, w,isv,, for some m <k

e Example: assuming that the node numbering is
in alphabetical order, calculate R(©, R, and R(?

eo AR
A= 8 g) .-"-'?.- .
0 0

o o oo
- O O O
- O O o

Quickly Calculating R

e Back to the matrix multiplication approach:

- Hl?w much time did it take to compute AX[i][j, once we have
Ak1?

e Can we do better when calculating RM[i][j] from R(k1)?
e How can R®[i][j] be 1?
— either R&1[i][j] is 1, or

— there is a path from i to k that uses no vertices higher than k-
1, and a similar path from k to j.

e Thus RM[i][j] is
R&-D[i][j] or (R&V[i][k] and R&DK][j])

e Note that this can be calculated in constant time
e Time for calculating R from R(k-1)?
e Total time for Warshall's algorithm? .

Code and example on next slides v

ALGORITHM Warshall(A[1..n, 1..n])

/MMmplements Warshall’s algorithm for computing the transitive closure
/[Input: The adjacency matrix A of a digraph with n vertices
//Output: The transitive closure of the digraph
RO 4
for k < 1ton do
fori < 1tondo
for j < 1tondo
R®i, j1< R*V[, jlor (R*D[i, k] and R&=D[k, j])
return R

Rk-1= gl

|| = RO= k| 1

o ==

FIGURE 8.3 Rule for changing zeros in Warshall's algorithm

Ones reflect the existence of paths

with no intermediate vertices

(R0 s just the adjacency matrix);

boxed row and column are used for getting A1V,

Rith =

= O olo|n
o o =|o|o

Qo oo

Ones reflect the existence of paths

with intermediate vertices numbered

not higher than 1, i.e., just vertex a

(note a new path from dto b);

boxed row and column are used for getting A2,

Rill =

=1 l=] =1
o o|=|lo .

ao oW
|.-oo-|tr o o o|=|o

Ones reflect the existence of paths

with intermediate vertices numbered

not higher than 2,i.e., aand b

(note two new paths);

boxed row and column are used for getting A3,

Ri2l =

Qo oo
slolo - o
-] = -

|2

Ones reflect the existence of paths

with intermediate vertices numbered

not higher than 3,ie., a b, and ¢

(no new paths);

boxed row and column are used for getting R4,

Ri3 =

Qoo w
—“loo o

-0 -e-l (=00 =O0 oD —'OOOD:|—'ODOQ:

Ones reflect the existence of paths
with intermediate vertices numbered
not higher than 4, i.e., a, b, ¢, and d
(note five new paths).

Ri4) =

—-_ 0 = -0 —ooon[-loooln

I TR T (RS

Qo oW
= T =

FIGURE 8.4 Application of Warshall's algorithm to the digraph shown. Mew ones are in
bold.

Floyd's algorithm

All-pairs shortest path

A network is a graph whose edges are labeled by
(usually) non-negative numbers. We store those edge
numbers as the values in the adjacency matrix for the
graph

A shortest path from vertex u to vertex v is a path
whose edge sum is smallest.

Floyd's algorithm calculates the shortest path from u to
v for each pair (u, v) od vertices.

It is so much like Warshall's algorithm, that | am
confident you can quickly get the details from the
textbook after you understand Warshall's algorithm.

Dynamic Programming Example

OPTIMAL BINARY SEARCH TREES

€

Warmup: Optimal linked list order

e Suppose we have n distinct data items
X1, Xy, -y X, in @ linked list.

* Also suppose that we know the probabilities p,,
P, -, P, that each of the items is the one we'll be
searching for.

e Questions we'll attempt to answer:

— What is the expected number of probes before a
successful search completes?

— How can we minimize this number?
— What about an unsuccessful search?

Examples

e p,=1/nfor eachi.
— What is the expected number of probes?
® pl = 1/2' p2 = %; e pn-l = 1/2n-1' pn = 1/2n-1
— expected number of probes:
= n 1
?4‘ 2n_1 = 2— 2n_1 < 2
i=1
e What if the same items are placed into the list in
the opposite order?

oo 1 1
Z n+1-i + n-1 =N _1+ n-1
= 2 2 2
* The next slide shows the evaluation of the last_. 2

two summations in Maple. ==
— Good practice for you? prove them by induction

11

Calculations for previous slide

> sum(i/2"i, i=1..n-1)+ n/2"(n-1);

> simplify (%) ;
_ L-m
[» sum(i/24(n+1-i), i=2..n) + 1/2%(n-1):

1
2(?3—1)

n—1+

What if we don't know the probabilities?

1. Sort the list so we can at least improve the
average time for unsuccessful search

2. Self-organizing list:

— Elements accessed more frequently move toward the
front of the list; elements accessed less frequently
toward the rear.

— Strategies:
e Move ahead one position (exchange with previous element)
e Exchange with first element
e Move to Front (only efficient if the list is a linked list)

12

Optimal Binary Search Trees

* Suppose we have n distinct data keys K;, K,, ...,
K, (in increasing order) that we wish to arrange
into a Binary Search Tree

e This time the expected number of probes for a
successful or unsuccessful search depends on
the shape of the tree and where the search
ends up

13

