

No handout today

- Announcements:
- HW 12 is now available.
- Due next Thursday.
- Exam Tuesday, Nov 4
- In my office today: Hours 6, 9, first half of 10.

B-trees

- We will do a quick overview.
- For the whole scoop on B-trees (Actually B+trees), take CSSE 333, Databases.
- Nodes can contain multiple keys and pointers to other to subtrees

B-tree nodes

- Each node can represent a block of disk storage; pointers are disk addresses
- This way, when we look up a node (requiring a disk access), we can get a lot more information than if we used a binary tree
- In an n-node of a B-tree, there are n pointers to subtrees, and thus n-1 keys
- For all keys in T_i, K_i≤T_i < K_{i+1}
 K_i is the smallest key that appears in T_i

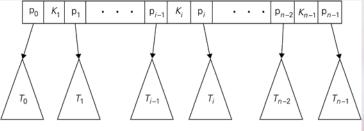
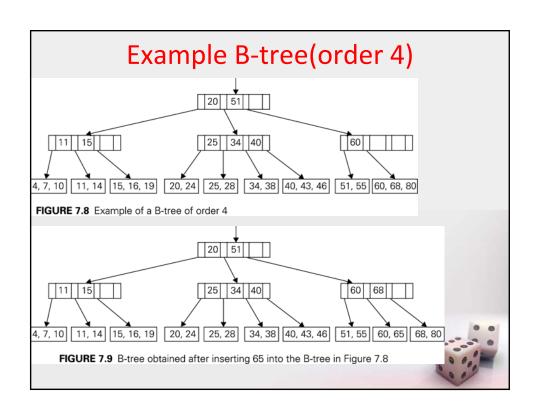


FIGURE 7.7 Parental node of a B-tree

B-tree nodes (tree of order m)

- All nodes have at most m-1 keys
- All keys and associated data are stored in special *leaf* nodes (that thus need no child pointers)
- The other (parent) nodes are *index* nodes
- All index nodes except the root have between m/2 and m children
- root has between 2 and m children
- All leaves are at the same level
- The space-time tradeoff is because of duplicating some keys at multiple levels of the tree
- Especially useful for data that is too big to fit in memory. Why?
- Example on next slide



Search for an item

- Within each parent or leaf node, the keys are sorted, so we can use binary search (log m), which is a constant with respect to n, the number of items in the table
- Thus the search time is proportional to the height of the tree
- Max height is approximately $log_{\lceil m/2 \rceil}$ n
- Exercise for you: Read and understand the straightforward analysis on pages 273-274
- Insert and delete are also proportional to height of the tree

Dynamic programming

- Used for problems with recursive solutions and overlapping subproblems
- Typically, we save (memoize) solutions to the subproblems, to avoid recomputing them.
- You should look at the simple examples from Section 8.1 in the textbook.

Dynamic Programming Example

- Binomial Coefficients:
- C(n, k) is the coefficient of x^k in the expansion of (1+x)ⁿ
- C(n,0) = C(n, n) = 1.
- If 0 < k < n, C(n, k) = C(n-1, k) + C(n-1, k-1)
- Can show by induction that the "usual" factorial formula for C(n, k) follows from this recursive definition.
 - A good practice problem for you
- If we don't cache values as we compute them, this can take a lot of time, because of duplicate (overlapping) computation.

Computing a binomial coefficient

Binomial coefficients are coefficients of the binomial formula: $(a + b)^n = C(n,0)a^nb^0 + ... + C(n,k)a^{n-k}b^k + ... + C(n,n)a^0b^n$

Recurrence:
$$C(n,k) = C(n-1,k) + C(n-1,k-1)$$
 for $n > k > 0$
 $C(n,0) = 1$, $C(n,n) = 1$ for $n \ge 0$

Value of C(n,k) can be computed by filling in a table:

Computing C(n, k):

ALGORITHM Binomial(n, k)

//Computes C(n, k) by the dynamic programming algorithm //Input: A pair of nonnegative integers $n \ge k \ge 0$ //Output: The value of C(n, k) for $i \leftarrow 0$ to n do for $j \leftarrow 0$ to $\min(i, k)$ do if j = 0 or j = i $C[i, j] \leftarrow 1$ else $C[i, j] \leftarrow C[i - 1, j - 1] + C[i - 1, j]$ return C[n, k]

Time efficiency: $\Theta(nk)$

Space efficiency: $\Theta(nk)$

If we are computing C(n, k) for many different n and k values, we could cache the table between calls.

Transitive closure of a directed graph

- We ask this question for a given directed graph G: for each of vertices, (A,B), is there a path from A to B in G?
- Start with the boolean adjacency matrix A for the n-node graph G. A[i][j] is 1 if and only if G has a directed edge from node i to node j.
- The transitive closure of G is the boolean matrix T such that T[i][j] is 1 iff there is a nontrivial directed path from node i to node j in G.
- If we use boolean adjacency matrices, what does M² represent? M³?

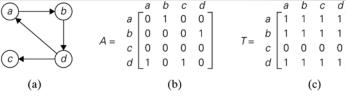


FIGURE 8.2 (a) Digraph. (b) Its adjacency matrix. (c) Its transitive closure.

Transitive closure via multiplication

- Again, using + for or, we get $T = M + M^2 + M^3 + ...$
- Can we limit it to a finite operation?
- We can stop at Mⁿ⁻¹.
 - How do we know this?
- Number of numeric multiplications for solving the whole problem?

Warshall's algorithm

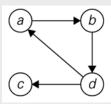
- Similar to binomial coefficients algorithm
- Assumes that the vertices have been numbered
 1, 2, ..., n
- Define the boolean matrix R^(k) as follows:
 - R^(k)[i][j] is 1 iff there is a path in the directed graph $v_i=w_0\to w_1\to ...\to w_s=v_j$, where
 - s >=1, and
 - for all t = 1, ..., s-1, w_t is v_m for some m ≤ k
 i.e, none of the intermediate vertices are numbered higher
 than k
- Note that the transitive closure T is R⁽ⁿ⁾

R^(k) example

 R^(k)[i][j] is 1 iff there is a path in the directed graph

$$v_i = w_0 \rightarrow w_1 \rightarrow ... \rightarrow w_s = v_j$$
, where

- s >1, and
- for all t = 2, ..., s-1, w_t is v_m for some m ≤ k
- Example: assuming that the node numbering is in alphabetical order, calculate R⁽⁰⁾, R⁽¹⁾, and R⁽²⁾



$$A = \begin{array}{c} a & b & c & d \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{array}$$

Quickly Calculating R(k)

- Back to the matrix multiplication approach:
 - How much time did it take to compute $A^k[i][j]$, once we have A^{k-1} ?
- Can we do better when calculating R^(k)[i][j] from R^(k-1)?
- How can R^(k)[i][j] be 1?
 - either $R^{(k-1)}[i][j]$ is 1, or
 - there is a path from i to k that uses no vertices higher than k-1, and a similar path from k to j.
- Thus $R^{(k)}[i][j]$ is $R^{(k-1)}[i][j]$ or ($R^{(k-1)}[i][k]$ and $R^{(k-1)}[k][j]$)
- Note that this can be calculated in constant time
- Time for calculating $R^{(k)}$ from $R^{(k-1)}$?
- Total time for Warshall's algorithm?

Code and example on next slides

ALGORITHM Warshall(A[1..n, 1..n])

//Implements Warshall's algorithm for computing the transitive closure //Input: The adjacency matrix A of a digraph with n vertices

//Output: The transitive closure of the digraph

$$R^{(0)} \leftarrow A$$

for $k \leftarrow 1$ to n do

for $i \leftarrow 1$ to n do

for $j \leftarrow 1$ to n do

$$R^{(k)}[i, j] \leftarrow R^{(k-1)}[i, j] \text{ or } (R^{(k-1)}[i, k] \text{ and } R^{(k-1)}[k, j])$$

return $R^{(n)}$

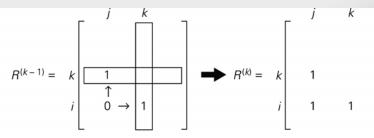
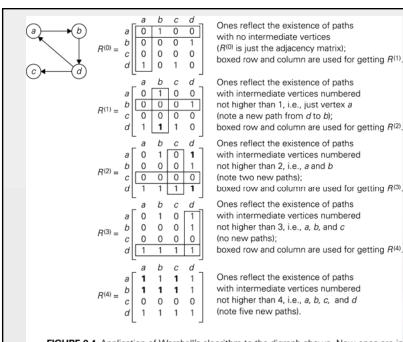


FIGURE 8.3 Rule for changing zeros in Warshall's algorithm



es are in

FIGURE 8.4 Application of Warshall's algorithm to the digraph shown. New ones are in bold.

Floyd's algorithm

- All-pairs shortest path
- A network is a graph whose edges are labeled by (usually) non-negative numbers. We store those edge numbers as the values in the adjacency matrix for the graph
- A **shortest path** from vertex u to vertex v is a path whose edge sum is smallest.
- Floyd's algorithm calculates the shortest path from u to v for each pair (u, v) od vertices.
- It is so much like Warshall's algorithm, that I am confident you can quickly get the details from the textbook after you understand Warshall's algorithm.

Dynamic Programming Example

OPTIMAL BINARY SEARCH TREES

Warmup: Optimal linked list order

- Suppose we have n distinct data items
 x₁, x₂, ..., x_n in a linked list.
- Also suppose that we know the probabilities p₁,
 p₂, ..., p_n that each of the items is the one we'll be searching for.
- Questions we'll attempt to answer:
 - What is the expected number of probes before a successful search completes?
 - How can we minimize this number?
 - What about an unsuccessful search?

Examples

- $p_i = 1/n$ for each i.
 - What is the expected number of probes?
- $p_1 = \frac{1}{2}$, $p_2 = \frac{1}{4}$, ..., $p_{n-1} = \frac{1}{2^{n-1}}$, $p_n = \frac{1}{2^{n-1}}$
 - expected number of probes:

$$\sum_{i=1}^{n-1} \frac{i}{2^i} + \frac{n}{2^{n-1}} = 2 - \frac{1}{2^{n-1}} < 2$$

 What if the same items are placed into the list in the opposite order?

$$\sum_{i=2}^{n} \frac{i}{2^{n+1-i}} + \frac{1}{2^{n-1}} = n - 1 + \frac{1}{2^{n-1}}$$

- The next slide shows the evaluation of the last two summations in Maple.
 - Good practice for you? prove them by induction

Calculations for previous slide

```
> sum(i/2^i, i=1..n-1) + n/2^(n-1);

-2\left(\frac{1}{2}\right)^{n} n - 2\left(\frac{1}{2}\right)^{n} + 2 + \frac{n}{2^{(n-1)}}
> simplify(%);

-2^{(1-n)} + 2
> sum(i/2^(n+1-i), i=2..n) + 1/2^(n-1);

n-1 + \frac{1}{2^{(n-1)}}
```

What if we don't know the probabilities?

- 1. Sort the list so we can at least improve the average time for unsuccessful search
- 2. Self-organizing list:
 - Elements accessed more frequently move toward the front of the list; elements accessed less frequently toward the rear.
 - Strategies:
 - Move ahead one position (exchange with previous element)
 - Exchange with first element
 - Move to Front (only efficient if the list is a linked list)

Optimal Binary Search Trees

- Suppose we have n distinct data keys K₁, K₂, ...,
 K_n (in increasing order) that we wish to arrange into a Binary Search Tree
- This time the expected number of probes for a successful or unsuccessful search depends on the shape of the tree and where the search ends up

