MA/CSSE 473
Day 24 ® o

o -
P ' O
o

Student questions

Quadratic probing
proof

String search

FINISH THE HASHING DISCUSSION:
QUADRATIC PROBING -

Collision Resolution: Quadratic probing

e With linear probing, if there is a collision at H, we try H,
H+1, H+2, H+3, ... (all modulo the table size) until we
find an empty spot.

— Causes (primary) clustering
e With quadratic probing, we try H, H+12. H+22, H+32, ...

— Eliminates primary clustering, but can cause secondary
clustering.

— Is it possible that it misses some available array positions?

— l.e it repeats the same positions over and over, while never
probing some other positions?

Hints for quadratic probing

e Choose a prime number for the array size, then ...

— If the array is not more than half full, finding a place to do an
insertion is guaranteed , and no cell is probed twice before finding it

— Suppose the array size is P, a prime number greater than 3
— Show by contradiction that if i and j are < |P/2], and i#], then
H +i2 (mod P) £ H + j2 (mod P).
e Use an algebraic trick to calculate next index
— Replaces mod and general multiplication with subtraction and a bit

shift
— Difference between successive probes:
e H+ (i+1)2= H+i2+ (2i+1) [can use a bit-shift for the multiplication].

¢ nextProbe = nextProbe + (2i+1);
if (nextProbe >=P) nextProbe -=P;

Quadratic probing analysis

e No one has been able to analyze it

e Experimental data shows that it works well

— Provided that the array size is prime, and is the
table is less than half full

Brute Force String Search Example

The problem: Search for the first occurrence of a
pattern of length m in a text of length n.
Usually, m is much smaller than n.

* What makes brute force so slow?
* When we find a mismatch, we can shift the pattern by
only one character position in the text.

Text: abracadabtabradabracadabcadaxbrabbracadabraxxxxxxabracadabracadabra
Pattern: abracadabra
abracadabra
abracadabra
abracadabra ® o
abracadabra - =" 8

abracadabra v

Faster String Searching

Was a HW
problem

o A little better: but still ©(mn) on average
— Short-circuit the inner loop

e Brute force: worst case m(n-m+1)

def search{pattern, text):
n, m = len(text),lenipattern)
for 1 in range(n-m+l;:
1 =0
while] < m and text[i+]] == pattern[]]:
7 +=1
if J==m:
return 1

return False o

What we want to do

e When we find a character mismatch
— Shift the pattern as far right as we can
— Without the possibility of skipping over a match.

Horspool's Algorithm

A simplified version of the Boyer-Moore algorithm
A good bridge to understanding Boyer-Moore
Published in 1980

Recall: What makes brute force so slow?

— When we find a mismatch, we can only shift the pattern to
the right by one character position in the text.

— Text: abracadabtabradabracadabcadaxbrabbracadabraxxxxxxabracadabracadabra
Pattern: abracadabra
abracadabra
abracadabra
abracadabra

Can we sometimes shift farther?
Like Boyer-Moore, Horspool does the comparisons in a
counter-intuitive order (moves right-to-left o -
through the pattern)

Horspool's Main Question

e If there is a character mismatch, how far can
we shift the pattern, with no possibility of
missing a match within the text?

e What if the last character in the pattern is
compared to a character in the text that does
not occur anywhere in the pattern?

e Text: ... ABCDEFG ...
Pattern: CSSE473

How Far to Shift?

Look at first (rightmost) character in the part of the text
that is compared to the pattern:

The character is not in the pattern

..... C.......... {Cnotin pattern)
BAOBAB

e The character is in the pattern (but not the rightmost)
..... O.......-.--(0occursoncein pattern)
BAOBAB
..... A..........(Aoccurstwicein pattern)
BAOBAB

e The rightmost characters do match
..... R
BAOBAB =

°
" =" 0

Shift Table Example

e Shift table is indexed by text and pattern

alphabet
E.g., for BAOBAB:

Example of Horspool’s Algorithm

BARD LOVED BANANAS (this is the text)
BAOBAB (this is the pattern)
BAOBAB
BAOBAB
BAOBAB (unsuccessful search)

" =" 0

Horspool Code

def populateshiftTable(table, pattern, mMinusOne):
for i in range {mMinusoOne) :
table[ord(pattern[i])] = mMinusCne - 1

def search(pattern, text):
" return index of first occurrence of pattern in text;,
return -1 if no match """
n, m = len(text), len(pattern)
shiftTable = [m]*128 # if char not in pattern, shift by full amount
populateShiftTable (shiftTable, pattern, m-1)

i=m-1# 1 is position in text that corresponds to end of pattern
while i < n: # while not past end of text
k =0 # k is number of pattern characters compared so far

while k < m and pattern[m-1-k]==text[i-k]:
k 4= 1; # loop stops if mismatch or complete match

if k==m: # found a match
return i - m + 1
i =i + shiftTable[ord(text[1i])] # ready to begin next compariscon

return -1

-

Horspool Example

pattern = abracadabra
text =
abracadabtabradabracadabcadaxbrabbracadabraxxxxxxabracadabracadabra
shiftTable: a3 b2 rl a3 c6 a3 d4 a3 b2 rl1 a3 x11
abracadabtabradabracadabcadaxbrabbracadabraxxxxxxabracadabracadabra
abracadabra
abracadabtabradabracadabcadaxbrabbracadabraxxxxxxabracadabracadabra
abracadabra
abracadabtabradabracadabcadaxbrabbracadabraxxxxxxabracadabracadabra
abracadabra
abracadabtabradabracadabcadaxbrabbracadabraxxxxxxabracadabracadabra
abracadabra
abracadabtabradabracadabcadaxbrabbracadabraxxxxxxabracadabracadabra
abracadabra
abracadabtabradabracadabcadaxbrabbracadabraxxxxxxabracadabracadabra
abracadabra
abracadabtabradabracadabcadaxbrabbracadabraxxxxxxabracadabracadabra
abracadabra

Continued on
next slide

Horspool Example Continued

pattern = abracadabra

abracadabtabradabracadabcadaxbrabbracadabraxxxxxxabracadabracadabra
shiftTable: a3 b2 rl a3 c6 a3 d4 a3 b2 rl1 a3 x11

abracadabtabradabracadabcadaxbrabbracadabraxxxxxxabracadabracadabra
abracadabra
abracadabtabradabracadabcadaxbrabbracadabraxxxxxxabracadabracadabra
abracadabra
abracadabtabradabracadabcadaxbrabbracadabraxxxxxxabracadabracadabra
abracadabra
abracadabtabradabracadabcadaxbrabbracadabraxxxxxxabracadabracadabra
abracadabra
abracadabtabradabracadabcadaxbrabbracadabraxxxxxxabracadabracadabra
abracadabra
abracadabtabradabracadabcadaxbrabbracadabraxxxxxxabracadabracadabra
abracadabra

49

Using brute force, we would have to compare the pattern -

to 50 different positions in the text before we find it; Wl
with Horspool, only 13 positions are tried. '

