Announcements:

1. HW 5 due Monday night. HW6 Thursday
2. Exam dates: Tuesday Sept 30, Tuesday November 4. In-class. Still not in the schedule page (soon!).

- If you are allowed extra time for the exam and plan to use that time, please talk with me soon about timing.

3. In my office hours $6,7,9$, and probably the last half of 8 today. (meeting prospective student; don't know how long it will take)
4. Monday we will discuss the Donald Knuth interview mentioned in the Day 3
5. Grading of yesterday's Primality testing checkup.:

- 9 - essentially all of the ingredients
- 6-most of the ingredients
- 3-At least one of the ingredients, and with some clarity.
- 0 - Vague stuff about clarity, but no mention of Fermat's theorem by name or by formula.

Main ideas from today:

1. Cryptography intro. We focus on how to encode a single integer message m with $0 \leq \mathrm{m}<\mathrm{N}$. e is the encoding key, and d is the decoding key.
2. In public-key cryptography, I give you (e, N) so you can send me a message, but I keep d private.
3. RSA: Choose two large primes p and q, and let $N=p q$.
4. Choose any number e that is relatively prime to $\mathrm{N}^{\prime}=(\mathrm{p}-1)(\mathrm{q}-1)$. Then
a. the mapping $\mathrm{x} \rightarrow \mathrm{x}^{\mathrm{e}} \bmod \mathrm{N}$ is a bijection on $\{0,1, \ldots, \mathrm{~N}-1\}$, and
b. If d is the inverse of $e \bmod N^{\prime}$, then for all x in $\{0,1, \ldots, N-1\},\left(x^{e}\right)^{d} \equiv x(\bmod N)$.
5. Example: $\mathrm{p}=63, \mathrm{q}=53$ (so $\mathrm{N}=3233$):
6. Property that is the basis of RSA: If $\mathrm{N}=\mathrm{pq}$ for 2 primes p and q , and if e is any number that is relatively prime to $\mathrm{N}^{\prime}=$ (p-1)(q-1), then
a. the mapping $\mathrm{x} \rightarrow \mathrm{xe} \bmod \mathrm{N}$ is a bijection on $\{0,1, \ldots, N-1\}$
b. If d is the inverse of $e \bmod (p-1)(q-1)$, then for all x in $\{0,1, \ldots, N-1\},(x e) d \equiv x(\bmod N)$
