

The algorithm (modified)

- To test N for primality
 - Pick positive integers a_1 , a_2 , ..., $a_k < N$ at random
 - For each a_i , check for $a_i^{N-1} \equiv 1 \pmod{N}$
 - Use the Miller-Rabin approach, (next slides) so that Carmichael numbers are unlikely to thwart us.
 - If a_i^{N-1} is not congruent to 1 (mod N), or Miller-Rabin test produces a non-trivial square root of 1 (mod N)
 - return false
 - return true

Note that this algorithm may produce a "false prime", but the probability is very low if k is large enough.

Miller-Rabin test

- A Carmichael number N is a composite number that passes the Fermat test for all a with 1 ≤ a <N and gcd(a, N)=1.
- A way around the problem (Rabin and Miller): Note that for some t and u (u is odd), N-1 = 2^tu.
- As before, compute a^{N-1}(mod N), but do it this way:
 - Calculate a^u (mod N), then repeatedly square, to get the sequence a^u (mod N), a^{2u} (mod N), ..., a^{2^tu} (mod N) $\equiv a^{N-1}$ (mod N)
- Suppose that at some point, $a^{2^{i_u}} \equiv 1 \pmod{N}$, but $a^{2^{i-1}u}$ is not congruent to 1 or to N-1 (mod N)
 - then we have found a nontrivial square root of 1 (mod N).
 - We will show that if 1 has a nontrivial square root (mod N), then N cannot be prime.

Example (first Carmichael number)

- N = 561. We might randomly select a = 101.
 - Then $560 = 2^4 \cdot 35$, so u = 35, t = 4
 - $a^u \equiv 101^{35} \equiv 560 \pmod{561}$ which is -1 (mod 561) (we can stop here)
 - $a^{2u} \equiv 101^{70} \equiv 1 \pmod{561}$
 - **–** ..
 - $-a^{16u} \equiv 101^{560} \equiv 1 \pmod{561}$
 - So 101 is not a witness that 561 is composite (we say that 101 is a Miller-Rabin liar for 561, if indeed 561 is composite)
- Try a = 83
 - $a^u \equiv 83^{35} \equiv 230 \pmod{561}$
 - $a^{2u} \equiv 83^{70} \equiv 166 \pmod{561}$
 - $a^{4u} \equiv 83^{140} \equiv 67 \pmod{561}$
 - $a^{8u} \equiv 83^{280} \equiv 1 \pmod{561}$
 - So 83 is a witness that 561 is composite, because 67 is a non-trivial square root of 1 (mod 561).

Lemma: Modular Square Roots of 1

- If there is an s which is neither 1 or -1 (mod N), but s² ≡ 1 (mod N), then N is not prime
- Proof (by contrapositive):
 - Suppose that N is prime and $s^2 \equiv 1 \pmod{N}$
 - $s^2-1 \equiv 0 \pmod{N}$ [subtract 1 from both sides]
 - $(s-1)(s+1) \equiv 0 \pmod{N}$ [factor]
 - So N divides (s 1) (s + 1) [def of congruence]
 - Since N is prime, N divides (s 1) or N divides (s + 1) [def of prime]
 - S is congruent to either 1 or -1 (mod N) [def of congruence]
- This proves the lemma, which validates the Miller-Rabin test

Accuracy of the Miller-Rabin Test

- Rabin* showed that if N is composite, this test will demonstrate its non-primality for at least ¾ of the numbers a that are in the range 1...N-1, even if a is a Carmichael number.
- Note that 3/4 is the worst case; randomly-chosen composite numbers have a much higher percentage of witnesses to their non-primeness.
- If we test several values of a, we have a very low chance of incorrectly flagging a composite number as prime.

*Journal of Number Theory 12 (1980) no. 1, pp 128-138

Efficiency of the Test

- Testing a k-bit number is Θ(k³)
- If we use the fastest-known integer multiplication techniques (based on Fast Fourier Transforms), this can be pushed to Θ(k² * log k * log log k)

Testing "small" numbers

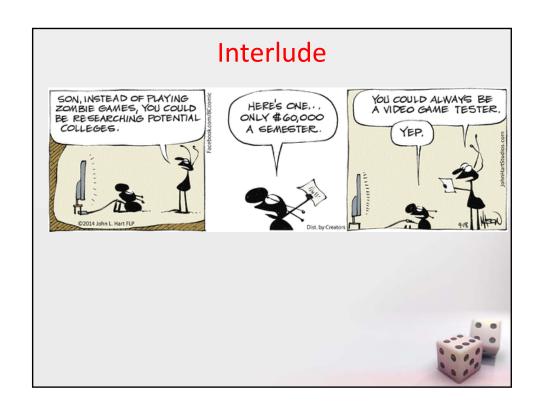
- From Wikipedia article on the Miller-Rabin primality test:
- When the number N we want to test is small, smaller fixed sets of potential witnesses are known to suffice. For example, Jaeschke* has verified that
 - if N < 9,080,191, it is sufficient to test a = 31 and 73
 - if N < 4,759,123,141, it is sufficient to test a = 2, 7, and 61
 - if N < 2,152,302,898,747, it is sufficient to testa = 2, 3, 5, 7, 11
 - if N < 3,474,749,660,383, it is sufficient to testa = 2, 3, 5, 7, 11, 13
 - if N < 341,550,071,728,321, it is sufficient to testa = 2, 3, 5, 7, 11, 13, 17

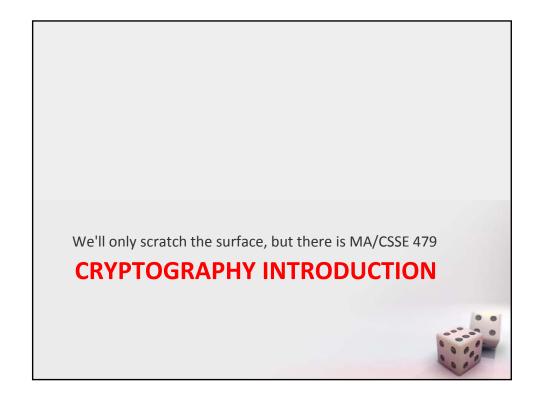
Generating Random Primes

- For cryptography, we want to be able to quickly generate random prime numbers with a large number of bits
- Are prime numbers abundant among all integers?
 Fortunately, yes
- Lagrange's prime number theorem
 - Let π (N) be the number of primes that are ≤ N, then π (N) ≈ N / In N.
 - Thus the probability that an k-bit number is prime is approximately $(2^k / \ln (2^k)) / 2^k \approx 1.44 / k$

Random Prime Algorithm

- To generate a random k-bit prime:
 - Pick a random k-bit number N
 - Run a primality test on N
 - If it passes, output N
 - Else repeat the process
 - Expected number of iterations is $\Theta(k)$





Cryptography Scenario

- I want to transmit a message m to you
 - in a form e(m) that you can readily decode by running d(e(m)),
 - And that an eavesdropper has little chance of decoding
- Private-key protocols
 - You and I meet beforehand and agree on e and d.
- Public-key protocols
 - You publish an e for which you know the d, but it is very difficult for someone else to guess the d.
 - Then I can use e to encode messages that only you* can decode

* and anyone else who can figure out what d is if they know e.

Messages can be integers

- Since a message is a sequence of bits ...
- We can consider the message to be a sequence of b-bit integers (where b is fairly large), and encode each of those integers.
- Here we focus on encoding and decoding a single integer.

RSA Public-key Cryptography

- Rivest-Shamir-Adleman (1977)
 - A reference: Mark Weiss, Data Structures and Problem Solving Using Java, Section 7.4
- Consider a message to be a number modulo N, an k-bit number (longer messages can be broken up into k-bit pieces)
- The encryption function will be a bijection on {0, 1, ..., N-1}, and the decryption function will be its inverse
- How to pick the N and the bijection?

bijection: a function f from a set X to a set Y with the property that for every y in Y, there is exactly one x in X such that f(x) = y. In other words, f is both one-to-one and onto.

N = p q

- Pick two large primes, p and q, and let N = pq.
- Property: If e is any number that is relatively prime to N' = (p-1)(q-1), then
 - the mapping $x \rightarrow x^e \mod N$ is a bijection on $\{0, 1, ..., N-1\}$, and
 - If d is the inverse of e mod (p-1)(q-1), then for all x in $\{0, 1, ..., N-1\}$, $(x^e)^d \equiv x \pmod{N}$.
- We'll first apply this property, then prove it.

Public and Private Keys

- The first (bijection) property tells us that x→x^e mod N is a reasonable way to encode messages, since no information is lost
 - If you publish (N, e) as your public key, anyone can encrypt and send messages to you
- The second tells how to decrypt a message
 - When you receive a message m', you can decode it by calculating (m')^d mod N.

Example (from Wikipedia)

- p=61, q=53. Compute N = pq = 3233
- (p-1)(q-1) = 60.52 = 3120
- Choose e=17 (relatively prime to 3120)
- Compute multiplicative inverse of 17 (mod 3120)
 d = 2753 (evidence: 17·2753 = 46801 = 1 + 15·3120)
- To encrypt m=123, take 123¹⁷ (mod 3233) = 855
- To decrypt 855, take 855²⁷⁵³ (mod 3233) = 123
- In practice, we would use much larger numbers for p and q.
- On exams, smaller numbers ©

Recap: RSA Public-key Cryptography

- Consider a message to be a number modulo N, n k-bit number (longer messages can be broken up into n-bit pieces)
- Pick any two large primes, p and q, and let N = pq.
- **Property**: If e is any number that is relatively prime to (p-1)(q-1), then
 - the mapping x→x^e mod N is a bijection on {0, 1, ..., N-1}
 - If d is the inverse of e mod (p-1)(q-1), then for all x in $\{0, 1, ..., N-1\}, (x^e)^d \equiv x \pmod{N}$
- We have applied the property; we should prove it

