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Primality Testing

Encryption Intro

The algorithm (modified)

e To test N for primality
— Pick positive integers a,, a,, ..., a, <N at random

— For each a, check for aN1=1 (mod N)

e Use the Miller-Rabin approach, (next slides) so that
Carmichael numbers are unlikely to thwart us.

e If aN1is not congruent to 1 (mod N), or
Miller-Rabin test produces a non-trivial
square root of 1 (mod N)

— return false

— return true

L ]
Note that this algorithm may produce a “false:prime”, =" =8

but the probability is very low if k is large enough. v




Miller-Rabin test

A Carmichael number N is a composite number that
passes the Fermat test for all a with 1 <a <N and
gcd(a, N)=1.

A way around the problem (Rabin and Miller):
Note that for some t and u (u is odd), N-1 = 2tu.

As before, compute aM1(mod N), but do it this way:

— Calculate a¥ (mod N), then repeatedly square, to get the
sequence
a (mod N), a2 (mod N), ..., a2« (mod N) = aV! (mod N)

Suppose that at some point, a?u=1 (mod N), but
a2 js not congruent to 1 or to N-1 (mod N)

— then we have found a nontrivial square root of 1 (mod I:l)..

— We will show that if 1 has a nontrivial square
root (mod N), then N cannot be prime.
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Example (first Carmichael number)

e N=561. We might randomly select a = 101.
— Then 560 = 24-35, so u=35, t=4

— aY¥=101%* =560 (mod 561) which is -1 (mod 561)
(we can stop here)

— a2'=1017°=1 (mod 561)
— al®u=101%0=1 (mod 561)

So 101 is not a witness that 561 is composite (we say that 101 is
a Miller-Rabin liar for 561, if indeed 561 is composite)

e Trya=283
— a¥=83% =230 (mod 561)
— a%=8370=166 (mod 561)
— a®=8310=67 (mod 561)
— a%=83%%0=1 (mod 561) <

— So 83 is a witness that 561 is composite, because 67 is a nQp- -~ o
trivial square root of 1 (mod 561). .




Lemma: Modular Square Roots of 1

e If there is an s which is neither 1 or -1 (mod N), but
s2=1 (mod N), then N is not prime
e Proof (by contrapositive):
— Suppose that N is prime and s2=1 (mod N)
— s2-1=0(mod N) [subtract 1 from both sides]
— (s-1)(s+1)=0(mod N) [factor]
— So N divides (s-1)(s+1) [defof congruence]
— Since N is prime, N divides (s - 1) or N divides (s + 1)
[def of prime]
— Sis congruent to either 1 or -1 (mod N) [def of congruence]

e This proves the lemma, which validates the Miller-Rabin
test

Accuracy of the Miller-Rabin Test

e Rabin* showed that if N is composite, this test will
demonstrate its non-primality for at least % of
the numbers a that are in the range 1...N-1, even
if a is a Carmichael number.

e Note that 3/4 is the worst case; randomly-chosen
composite numbers have a much higher
percentage of witnesses to their non-primeness.

¢ |f we test several values of a, we have a very low
chance of incorrectly flagging a composite number
as prime.

|*Journal of Number Theory 12 (1980) no. 1, pp 128-138 | v




Efficiency of the Test

e Testing a k-bit number is B(k3)
e |f we use the fastest-known integer
multiplication techniques (based on Fast

Fourier Transforms), this can be pushed to
B(k?* log k * log log k)

Testing "small" numbers
e From Wikipedia article on the Miller-Rabin primality test:

e When the number N we want to test is small, smaller fixed
sets of potential witnesses are known to suffice. For
example, Jaeschke* has verified that

— if N< 9,080,191, it is sufficient to test a =31 and 73

— if N<4,759,123,141, it is sufficient to testa =2, 7, and 61

— if N<2,152,302,898,747, it is sufficient to test
a=2,3,5711

if N < 3,474,749,660,383, it is sufficient to test

a=2,3,5711,13

if N <341,550,071,728,321, it is sufficient to test .
a=2,3,57,11,13,17 " e

-
* Gerhard Jaeschke, “On strong pseudoprimes to several bases”, Mathematics of Computation 61 (lggv




Generating Random Primes

e For cryptography, we want to be able to quickly
generate random prime numbers with a large
number of bits

e Are prime numbers abundant among all integers?
Fortunately, yes
e Lagrange's prime number theorem

— Let (N) be the number of primes that are < N, then
7t(N) = N/ In N.

— Thus the probability that an k-bit number is prime is
approximately (2¥/In (2¥) )/ 2k~ 1.44/ k

Random Prime Algorithm

e To generate a random k-bit prime:
— Pick a random k-bit number N
— Run a primality test on N
— If it passes, output N
— Else repeat the process
— Expected number of iterations is ©(k)
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Cryptography Scenario

e | want to transmit a message m to you
— in a form e(m) that you can readily decode by running
d(e(m)),
— And that an eavesdropper has little chance of decoding
e Private-key protocols
— You and | meet beforehand and agree on e and d.

® Public-key protocols
— You publish an e for which you know the d, but it is
very difficult for someone else to guess the d.

— Then | can use e to encode messages that only you*
can decode

|* and anyone else who can figure out what d is if they know e. |

Messages can be integers

e Since a message is a sequence of bits ...

e We can consider the message to be a sequence
of b-bit integers (where b is fairly large), and
encode each of those integers.

e Here we focus on encoding and decoding a
single integer.




RSA Public-key Cryptography

e Rivest-Shamir-Adleman (1977)

— Areference : Mark Weiss, Data Structures and
Problem Solving Using Java, Section 7.4

e Consider a message to be a number modulo N, an
k-bit number (longer messages can be broken up
into k-bit pieces)

e The encryption function will be a bijection on
{0, 1, ..., N-1}, and the decryption function will be
its inverse

e How to pick the N and the bijection?

bijection: a function f from a set X to a set Y with the
property that for every y in Y, there is exactly one x in X such
that f(x) = y. In other words, f is both one-to-one and onto.

N=pq

e Pick two large primes, p and g, and let N = pq.
e Property: If e is any number that is relatively
prime to N' = (p-1)(g-1), then

— the mapping x—>x® mod N is a bijection on
{0, 1, ..., N-1}, and

— If d is the inverse of e mod (p-1)(g-1), then for all x
in {0, 1, ..., N-1}, (x¢)9=x (mod N).

o We'll first apply this property, then prove it.




Public and Private Keys

e The first (bijection) property tells us that
x—>x® mod N is a reasonable way to encode
messages, since no information is lost
— If you publish (N, e) as your public key, anyone can

encrypt and send messages to you

e The second tells how to decrypt a message

— When you receive a message m', you can decode it
by calculating (m')4 mod N.

Example (from Wikipedia)

p=61, g=53. Compute N = pq=3233

(p-1)(g-1) = 60-52 = 3120

Choose e=17 (relatively prime to 3120)

Compute multiplicative inverse of 17 (mod 3120)
— d=2753 (evidence: 17-2753 = 46801 =1 + 15-:3120)
To encrypt m=123, take 1237 (mod 3233) = 855
To decrypt 855, take 85527>3 (mod 3233) =123

In practice, we would use much larger numbers for p
and g.

On exams, smaller numbers ©




Recap: RSA Public-key Cryptography

e Consider a message to be a number modulo N, n
k-bit number (longer messages can be broken up
into n-bit pieces)

e Pick any two large primes, p and g, and let N = pq.

e Property: If e is any number that is relatively
prime to (p-1)(g-1), then

— the mapping x—>x® mod N is a bijection on
{0,1, ... N-1}

— If d is the inverse of e mod (p-1)(g-1), then for all x in
{0, 1, ..., N-1}, (x¢)4 = x (mod N)

e We have applied the property; we should prove it
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