Announcements:

1. HW 4 due Thursday night at 11:55PM. HW 5 due Monday, Sept 22 at 11:55 PM.
2. Exam dates: Tuesday Sept 30, Tuesday, November 4. In-class. Not in schedule page yet.

- If you are allowed extra time for the exam and plan to use that time, please talk with me soon about timing.

3. Don't use a pirated copy of the textbook!
4. Link to late days balance spreadsheet is near the top of the schedule page.

Main ideas from today (and some review from yesterday):

1. r is an inverse of $m(\bmod N)$ iff $r * m \equiv 1(\bmod N)$. If m has an inverse it is unique.
2. We can find the inverse by using the extended Euclidean algorithm. If GCD is not 1 , no inverse. Show that a number m cannot have two different inverses q and $r(\bmod N)$ that are both in range $1 \ldots N-1$.
3. Fermat's Little Theorem: If p is prime, and a is not $0(\bmod \mathrm{p})$, then $\mathrm{a}^{\mathrm{p}-1} \equiv 1(\bmod \mathrm{p})$.
4. What does Fermat's Little Theorem say about $\mathrm{a}^{\mathrm{N}-1}(\bmod \mathrm{~N})$
a. if N is prime?
b. if N is not prime?

5. Note that the inverse of Fermat's little theorem is not true!

6. Prove: If a is a number that is relatively prime to N such that $\mathrm{a}^{\mathrm{N}-1}$ is not congruent to $1 \bmod \mathrm{~N}$, then that same condition must be true for at least half of the numbers in the range $1 \ldots \mathrm{~N}-1$.
7. What is a Carmichael number, and why are such numbers troublesome for primality testing?
8. Outline our (Carmichael-free) primality testing algorithm
9. Give a simple and efficient algorithm for finding the t and u such that $N-1=2^{t} u$ (where u is odd) .
10. How does the Miller-Rabin test work?
