MA/CSSE 473
Day 06 ® o

L1
o .«-’ -~

Euclid's Algorithm

MA/CSSE 473 Day 06

e Student Questions

e Odd Pie Fight

e Euclid's algorithm

e (if there is time) extended Euclid's algorithm

Quick look at review topics in textbook

REVIEW THREAD

Another Induction Example

* Pie survivor
— An odd number of people stand in various positions (2D or
3D) such that no two distances between people are equal.
* Each person has a pie

» A whistle blows, and each person simultaneously and accurately
throws his/her pie at the nearest neighbor

— Claim: No matter how the people are arranged, at least one
person does not get hit by a pie

— Let P(n) denote the statement: "There is a survivor in every
odd pie fight with 2n + 1 people”

— Prove by induction that P(n) is true foralln =1

LA]
=

i

Euclid's Algorithm
Heading toward Primality Testing

ARITHMETIC THREAD

Euclid's Algorithm: the problem

* One of the oldest known algorithms (about 2500
years old)

e The problem: Find the greatest common divisor
(gcd) of two non-negative integers a and b.
e The approach you learned in elementary school:
— Completely factor each number
— find common factors (with multiplicity)
— multiply the common factors together to get the gcd
e Factoring Large numbers is hard!

e Simpler approach is needed

Euclid's Algorithm: the basis

e Based on the following rule:
— If x and y are positive integers with x >y, then gcd(x, y) =
gcd(y, x mod y)
e Proof of Euclid's rule:

— It suffices to show the simpler rule
- ged(x, y) =ged(y, x - y)
since x mod y can be obtained from x and y by repeated
subtraction
— Any integer that divides both x and y must also
divide x —y, so gcd(x, y) < gcd(y, x—v)
— Any integer that divides both y and x - y must also
divide x, so gcd(y, x-y) < gcd(y, x)
— Putting these together: gcd(y, x-y) = gcd(y, x)

[l . [
Euclid's Algorithm: the algorithm
def euclid(a, b):

T INPUT: Two integers a and b with a >= b >= 0
QUTPUT: ged(a, b)"""

if b == 0:
return a

return euclid(b, a & b}

e Example: euclid(60, 36)
e Does the algorithm work?
e How efficient is it?

Euclid's Algorithm: the analysis

def euclid(a, b):
T INPUT: Two integers a and b with a >= b >= 0
QUTPUT: ged(a, b)"""
if b == 0:
return a
return euclid(b, a & b}

Lemma:Ifa>b,thena% b<a/2
Proof

— Ifb<a/2,thena%b<b<a/2

— Ifb>a/2,thena%b=a-b<a/2
Application

After two recursive calls, both a and b are less than half of what
they were, (i.e. reduced by at least 1 bit)

Thus if a and b have k bits, at most 2k recursive calls are needed.
Each recursive call involves a division, 6(k?) < _: :

Entire algorithm is 6(k3) v

gcd and linear combinations

Lemma: If d is a common divisor of a and b,
and d = ax + by for some integers x and y, then
d = gcd(a,b)

Proof

— By the first of the two conditions, d divides both a and b. It
cannot exceed their greatest common divisor, so
d < gcd(a, b)

— gcd(a, b) is a common divisor of a and b, so it must divide
ax + by =d. Thus gcd(a, b) <d

— Putting these together, gcd(a, b) = d

If we can supply the x and y as in the lemma, we have

found the gcd.

It turns out that a simple modification of Euclid's
algorithm will calculate the x and y. =

Extended Euclid Algorithm

def euclidExtended(a, b):
nww TNPUT: Two integers a and b with a > b >= 0
OUTPUT: Integers x, vy, d such that d = ged(a, b)
and d = ax + by"""
print (7 ", a, b) # so we can see the process.

return 1, 0, a
X, ¥y, d = euclidExtended(b, a % b)
return y, x - af/b*y, d

¢ Proof that it works

— First, the number d it produces really is the gcd of
a and b. If we ignore the x and y values, and we
have the same algorithm as before.

Example: gcd (33, 14)

33=2*%14+5
14=2*5+4
5=1*4+1

4=4%*1+0,s0gcd(33,14)=1.
Now work backwards
1=5-4.Substitute 4 = 14 - 2*5.
1=5-(14-2*5) =3*5 - 14, Substitute 5 =33 - 2*14
1=3(33-2%14)-14=3%33 — 7*14
Thusx=3andy=-7 Done! =

Modular Inverse

e |n the real or rational numbers, every non-zero
number a has an inverse 1/a, also written a!
— xistheinverseofaiffax=1
— Every non-zero real number has a unique inverse
e Definition x is the multiplicative inverse
of a (modulo N) ifax=1 (mod N)
e We denote this inverse by a™ (if it exists)
— Note that 2 has no inverse modulo 6
— Does 5 have an inverse (modulo 6)?

e a has an inverse modulo N if and only if gcd(a, N)
e i.e. aand N are relatively prime 5

e If al exists, it is unique (among 1..N-1) v

Calculate Modular Inverse (if it exists)

e Assume that gcd(a, N) = 1.

The extended Euclid's algorithm gives us integers
xand y such thatax+ Ny =1

This implies ax=1 (mod N), so x is the inverse of a

Example: Find 111 mod 25

— We saw before that -9*%11 +4*25=1
- -9=16 (mod 25)

- S0 111=16 (mod 25)

Recall that Euclid's algorithm is ©(k3), where kis _ _
the number of bits of N. e

