Announcements:

1. HW 2 Due Tonight at 11:55PM.
2. HW3 and HW4 have been updated for this term.

Main ideas from today:

1. If c is a positive constant, find a simple big-Theta expression (as a function of n) for the following sum:

$$
\mathrm{f}(\mathrm{n})=1+\mathrm{c}+\mathrm{c}^{2}+\mathrm{c}^{3}+\ldots+\mathrm{c}^{\mathrm{n}}
$$

when $0<\mathrm{c}<1$
when $\mathrm{c}=1$
when $\mathrm{c}>1$
2. Which is harder (computationally): factoring numbers or determining whether numbers are prime?
3. Trace the integer division algorithm from class for divide (19, 4).
4. If x, y and N are k -bit integers, then the time requirement to compute $(\mathrm{x}+\mathrm{y})(\bmod \mathrm{N})$ is $\Theta(\quad)$.
5. If x, y and N are k -bit integers, then the time requirement to compute $(\mathrm{x} * \mathrm{y})(\bmod \mathrm{N})$ is $\Theta(\quad)$.
6. When exponentiating n-bit numbers $\mathrm{x}^{\mathrm{y}}(\bmod \mathrm{N})$, where N is also n -bit, how many recursive calls are needed?
7. Each call is $\Theta()$
8. Entire exponentiation algorithm is $\Theta(\quad)$
9. What problem does Euclid's Algorithm solve?
10. Show the recursive calls for Euclid's Algorithm applied to $\mathrm{a}=188$ and $\mathrm{b}=144$.
11. The following two conditions imply that $\mathrm{d}=\operatorname{gcd}(\mathrm{a}, \mathrm{b})$:
a.
b.
12. Prove the validity of the extended Euclid algorithm.

```
def euclidExtended(a, b) :
    """ INPUT: Two integers a and b with a >= b >= 0
        OUTPUT: Integers x, y, d such that d = gcd(a,
b)
    and d = ax + by"""
    print (" ", a, b) # so we can see the process.
    if b == 0:
        return 1, 0, a
    x, y, d = euclidExtended(b, a % b)
    return y, x - a//b*y, d
```

