MA/CSSE

473/474
How (not) to do an
induction proof

Reminder of some simple logic

- $A \rightarrow B$ (A implies B) means that whenever A is true, B is true also. The only way $A \rightarrow B$ can be false is when A is true and B is false.
- The inverse, $B \rightarrow A$, is not the same as $A \rightarrow B$.
- Example. Let a be $x<5$ and B be $x<12$
- Clearly, $A \rightarrow B$ is true for all x, because every number that is less than 5 is also less then 12.
- But $B \rightarrow A$ is not always true, e.g., $x=8$.
- If you are trying to prove $A \rightarrow B$, it is incorrect to instead prove $B \rightarrow A$.

B	A	$A->B$	$B->A$
T	T	T	T
T	F	F	T
F	T	T	F
F	F	T	T

- It is the contrapositive, not the inverse, that is equivalent to the original:
- i.e., $A \rightarrow B$ if and only if $(\operatorname{not} B) \rightarrow(\operatorname{not} A)$.

An induction proof is not like solving an equation!

- Sometimes solving an equation can lead to the insight of how we might prove something.
- But the induction process is more like checking the solution that you have already found.
- The "do the same thing to both sides of the equation" approach is seldom appropriate as part of an induction proof.

Induction Review

- To show that property $\mathrm{P}(\mathrm{n})$ is true for all integers $n \geq n_{0}$, it suffices to show:
- Ordinary Induction
- $P\left(n_{0}\right)$ is true
- For all $k \geq n_{0}$, if $P(k)$ is true, then $P(k+1)$ is also true.
or
- Strong Induction
- $P\left(n_{0}\right)$ is true (sometimes you need multiple base cases)
- For all $k>n_{0}$, if $P(j)$ is true for all j with $n_{0} \leq j<k$, then $P(k)$ is also true.

In this context, a property is a function whose domain is a subset of the non-negative integers and whose range is \{true, false\}

Induction Review

- To show that property $P(n)$ is true for all integers $n \geq n_{0}$, it suffices to show:
- Ordinary Induction
- $\mathrm{P}\left(\mathrm{n}_{0}\right)$ is true
- For all $k \geq n_{0}$, if $P(k)$ is true, then $P(k+1)$ is also true.

Note that what we need to prove for all k is

$$
P(k) \rightarrow P(k+1) \text {, not } P(k+1) \rightarrow P(k) \text {. }
$$

Thus it is incorrect to instead start with $P(k+1)$ and show that the induction assumption leads to $P(k)$, or that it leads to some true statement.

You will lose points on homework assignments if you use the "start with $\mathrm{P}(\mathrm{k}+1)$ and work backwards" approach.

Induction example

- For all $\mathrm{N} \geq 0, \quad \sum_{i=1}^{N} i \cdot 2^{i}=2^{N+1}(N-1)+2$
- This is formula 7 from the "Important Summation Formulas" in Appendix A of the 473 book, and is useful in one of the HW2 problems.
- The idea applies ot 474 and 230 students as well.

Induction example

- For all $\mathrm{N} \geq 0, \quad \sum_{i=1}^{N} i \cdot 2^{i}=2^{N+1}(N-1)+2$
- This is formula 7 on P470, and is useful in one of the HW2 problems.
- Proof of base case, $\mathrm{N}=0$.
- Left side is 0 because the sum is empty.
- Right side is $2-2=0$.
- Induction step: next slide

Induction example, continued

- What we need to show.
- For all $N \geq 0$, if $\sum_{i=1}^{N} i \cdot 2^{i}=2^{N+1}(N-1)+2$, then $\sum_{i=1}^{N+1} i \cdot 2^{i}=2^{N+2}(N)+2$ Next, an invalid "proof": $\sum_{i=1}^{N+1} i \cdot 2^{i}=2^{N+2}(N)+2$
$(N+1) 2^{N+1}+\sum_{i=1}^{N} i \cdot 2^{i}=2^{N+2}(N)+2$
$(N+1) 2^{N+1}+2^{N+1}(N-1)+2=2^{N+2}(N)+2$
$(N+1) 2^{N+1}+2^{N+1}(N-1)=2^{N+2}(N)$
$2^{N+1}(N+1+N-1)=2^{N+2}(N)$
$2 * 2^{N+1}(N)=2^{N+2}(N)$
$2^{N+2}(N)=2^{N+2}(N)$

Correct induction step

- What we need to show.
- For all $\mathrm{N} \geq 0$, if $\sum_{i=1}^{N} i \cdot 2^{i}=2^{N+1}(N-1)+2$, then

$$
\sum_{i=1}^{N} i \cdot 2^{i}=2^{N+1}(N-1)+2 \text { Now, a correct proof: }
$$

$$
\begin{aligned}
\sum_{i=1}^{N+1} i \cdot 2^{i} & =(N+1) 2^{N+1}+\sum_{i=1}^{N} i \cdot 2^{i} \\
& =(N+1) 2^{N+1}+2^{N+1}(N-1)+2 \\
& =2^{N+1}(N+1+N-1)+2 \\
& =2 * 2^{N+1}(N)+2 \\
& =2^{N+2}(N)+2
\end{aligned}
$$

