MA/CSSE 473
Day 04 ® o

L1
e ' O
<

Multiplication
runtime

Multiplication based
on Gauss formula

Mathematical
induction review

MA/CSSE 473 Day 04

e Divide and Conquer Multiplication a la Gauss
e Mathematical Induction review

e Tiling with Trominoes (if there is time)
— http://www3.amherst.edu/~nstarr/trom/puzzle-

8by8/

What questions do you have?

EFFICIENT INTEGER
MULTIPLICATION CONTINUED

For retference: The Master
Theorem

e The Master Theorem for Divide and Conquer

recurrence relations:

. For details, see Levitin
(] ’
Con5|der the recurrence pages 483-485 or

T(n) = aT(n/b) +f(n), T(1)=C, Weiss section 7.5.3.

where f(n) = (n*) and k>0,

Grimaldi's Theorem

e The solution is 10.1 is a special case of
the Master Theorem.

— B6(nk) if a< bk
— B(n*logn) if a=Dbk
— B(n'e8:2) if a> bk

We will use this theorem often. You should
review its proof soon (Weiss's proof is a bit
easier than Levitin's).

Recap: "Ordinary" Multiplication

e Example: multiply 13 by 11
0 1

1 1
x 1 0 1 1
1 1 O 1 (1101times1)
1 1 0 1 (1201 times 1, shifted once)
0O 0O 0 O (1201 times 1, shifted twice)
1 1 0 1 (1201 times 1, shifted thrice)
1 0 0 0 1 1 1 1 (binary143)

e There are N rows of 2n bits to add, so
we do an O(N) operation N times, thus
the whole multiplication is O() ?

e Can we do better? >

New Multiplication Approach

e Divide and Conquer
e To multiply two n-bit integers x and y:
— Split each into its left and right halves so that
X =2"2x +xp, and y=2"2y +y.
— The straightforward calculation of xy would be
(2M2x_ + xg)(2"2y, +yg) =
2%y + 2"2(X YR+ XRY1) + XgYR
— Code on next slide

— Thus T(n) = . Solution? =o==1.°

Divide and Conquer multiplication

def multiply(x, vy, n):
"""multiply two integers x and y, where n >= 0 is a power of 2,
and is >= the maximum number of bits in = or y"™"
return x * y
n_over_two = n//2
two_to_the n over two = 1 << n_over_two # a right bit-shift
note: these 2 cperations can be done by bit shifts and masking.

xL, xR = x // two_to_the n over two, x % two to_the n over two
vL, vR = y // two_to_the n_over two, v % two_to_the n over two

pl = multiply (xL, yL, n_over_two)
p2 = multiply (xL, yR, n_over_two)
p3 = multiply (xR, VL, n_over_two)
p4 = multiply (xR, yR, n_over_ two)

return (pl << n) + ((p2 + p3) << n_over_two) + p4

print multiply((3000, 40000, 16))

S .
Recurrence relation: solution: v

Can we do better than O(n?)?

e |s there an algorithm for multiplying two n-bit
numbers in time that is less than O(n?)?

e Basis: A discovery of Carl Gauss (1777-1855)
— Multiplying complex numbers:
— (a + bi)(c+di) = ac — bd + (bc + ad)i

Gauss's Algorithm

(a + bi)(c+di) = ac — bd + (bc + ad)i

— Needs four real-number multiplications and three
additions

e But bc + ad = (a+b)(c+d) — ac —bd

— And we have already computed ac and bd when we
computed the real part of the product!

e Thus we can do the complex product with three
multiplications and five additions

e Additions are so much faster than multiplications
that we can essentially ignore them.

* Alittle savings, but not a big deal until applied _ ¢ -

recursively! v

Code for Gauss-based Algorithm

Hef multiply(x, vy, n):
mrrmultiply two integers x and y, where n >= 0
is a power of 2, and as large as the maximum number of bits in x or y"""

if n == 1:
return x * y

n_over two = n // 2 # simply shifts the bits one to the right.
two_to the n over two = 1 << n_over_two
XL, XR = x // two_to_the n over two, x % two_to the n over two

yL, yR =y // two_to_the n over two, y % two_to_the n over_ two
note that these two operations could be done by bit shifts and masking.

pl = multiply (=L, yL, n _over two)
p2 = multiply (xL+xR, yL+yR, n over two)
p3 = multiply (%R, YR, n over two)

return (pl << n) + ((p2 - p3 - pl) << n_over_two) + p3

o
Recurrence relation: solution: v

Is this really a lot faster?

e Standard multiplication: 6(n?)

¢ Divide and conquer with Gauss trick: 6(n%>?)

e But there is a lot of additional overhead with
Gauss, so standard multiplication is faster for

small values of n. 10000
plot{ {n"2, n"1.59%}, n=0..100),

5000
* |n reality we would not let the oo
recursion go down to the 4000

single bit level, but only down 234
to the number of bits that our
machine can multiply in

hardware without overflow. T e

0o 4i3n5i:| 50 100

-
T

Back to the "review thread"

QUICK REVIEW OF
MATHEMATICAL INDUCTION

Induction Review

e To show that property* P(n) is true for all
integers n2n,, it suffices to show:
— Ordinary Induction
* P(ng) is true
e For all k=n,, if P (k) is true, then P(k+1) is also true.
or
— Strong Induction

* P(ny) is true (sometimes you need multiple base cases)
e For all k>n,, if P(j) is true for all j with n, < j <k, then P(k)

is also true.
* |n this context, a property is a function whose e : :
domain is a subset of the non-negative integers and o
whose range is {true, false} v

Induction examples

N .
e ForallN>0, D i-2'=2"*(N-1)+2

i=1
— This is formula 7 on P 470,
e Show that any postage amount of 24 cents or
more can be achieved using only 5-cent
stamps and 7-cent stamps.

€

Another Induction Example

Tiling with Trominoes

e We saw that a 2"x2" checkerboard can be tiled
with dominoes.

e What about trominoes?
e Clearly, we can't tile an entire board!

¢ Definition: A deficient rectangular grid of squares
is one that has one square missing.

e |t's easy to see that we can tile any 2x2 deficient
rectangle! (We can rotate the tromino)

[]
Note: HW 4 is about tiling with trominoes. | -=T = e

Trominoes Continued

e What about a 4 x 4 deficient rectangle?

e Can we tile this?

Fun with Tromino tiling: -

http://www3.amherst.edu/~nstarr/trom/puzzle-8by8/ v

Trominoes Continued

Prove by induction that we can tile any 2"x2"
deficient rectangle with trominoes

Base case: n=1 Done
Assume that we can do it for n=k
Show that we can do it for n=k+1

Assume WLOG that the missing square is in the

lower right quadrant of the rectangle

— If it is somewhere else, we could simply rotate the
board.

— Can we place one tromino in a way that allows us to
use the induction assumption?

Another Induction Example
Extended Binary Tree (EBT)

An Extended Binary tree is either
— an external node, or
— an (internal) root node and two

EBTs T, and Tg.
We draw internal nodes as circles and external nodes as squares.
— Generic picture and detailed picture.
This is simply an alternative way of viewing binary trees, in which
we view the null pointers as “places” where a search can end or
an element can be inserted.

A property of EBTs

e Property P(N): For any N>=0, any EBT with N internal nodes has
external nodes.

e Proof by strong induction, based on the recursive definition.
— A notation for this problem: IN(T), EN(T)

— Note that, like some other simple examples, this one can be
done without induction.

— But the purpose of this exercise is practice with strong
induction, especially on binary trees.

e What is the crux of any induction proof?

— Finding a way to relate the properties for larger values (in
this case larger trees) to the property for smaller values
(smaller trees). Do the proof now.

10

