Announcements:

1. HW 2 Due Thursday at 11:55PM. Start early.
2. HW3 and HW4 have been updated for this term.

Main ideas from today:

1. Gauss's algorithm for multiplying two complex numbers replaces \qquad multiplications by \qquad _.
2. What is the recurrence relation for the Gaussian Divide and Conquer multiplication algorithm?

What is its solution?
3. State in your own words the (Ordinary) Principle of Mathematical induction:

To prove that property $\mathrm{p}(\mathrm{n})$ is true for all integers $\mathrm{n} \geq \mathrm{n}_{0}$, (you fill in the rest)
(a)
(b)
4. Prove: For all $\mathrm{N} \geq 0, \sum_{i=1}^{N} i \cdot 2^{i}=2^{N+1}(N-1)+2$
5. Prove that any amount of postage that is 24 cents or more can be obtained using only 5 -cent stamps and 7 -cent stamps
6. An Extended Binary Tree with n internal nodes has \qquad external nodes.
7. Prove the statement from the previous question using (strong) induction, based on the definition of EBT.

