
MA/CSSE 473 – Design and Analysis of Algorithms 

Homework 10 (70 points total)  Updated for Summer, 2015 

Problems for enlightenment/practice/review (not to turn in, but you should think about them):  

6.1.1 [6.1.2] (closest numbers in an array with pre-sorting) 

6.1.2 [6.1.3] (intersection with pre-sorting) 

6.1.8 [6.1.10] (open intervals common point) 

6.1.11 (anagram detection) 

6.2.8ab (Gauss-Jordan elimination) 

6.3.9 (Range of numbers in a 2-3 tree) 

6.5.3 (efficiency of Horner's rule) 

6.5.4 (example of Horner's rule and synthetic division) 

7.1.7 (virtual initialization) 

Problems to write up and turn in: 
1. (10)  6.1.5 [6.1.7] (to sort or not to sort)   

2. (10)  6.2.8c (compare Gaussian Elimination to Gauss-Jordan) You should compute and compare actual 

number of multiplications, not just say that both are Θ(n^3).  Use division when you compare. 

3. (  6)  6.3.7 (2-3 tree construction and efficiency)  Show the steps in the construction and show  

                                     your calculation of the average key comparisons. 

4. (  3) 6.3.8                    (2-3 tree vs. binary tree).  Include a proof if it is true, or a counterexample if it is false. 

5. ( 3) 6.3.9                     (range of a 2-3 tree) 

6. (20)   Not in book       (sum of heights of nodes in a full tree) In this problem, we consider completely full binary  

                                        trees with N  nodes and height H   (so that N = 2H+1 – 1 )  

 

                 (a) (5 points) Show that the sum of the heights of all of the nodes of such a tree can be  

                        expressed as  
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 (b) (10 points) Prove by induction on H that the above sum of the heights of the nodes is  

       N - H - 1.  You may base your proof on the summation from part (a) (so you don't need  

       to refer to trees at all), or you may do a "standard" binary tree induction based on the  

       heights of the trees, using the definition that a non-empty binary tree has a root plus left  

       and right subtrees. I find the tree approach more straightforward, but you may use the  

       summation if you prefer. 

(c) (3 points) What is the big Θ estimate for the  sum of the depths of all of the nodes in such 

a  tree?   

(d) (2 points) How does the result of parts (b) and (c)  apply to Heapsort analysis? 

      Example of height and depth sums:  Consider  a full tree with height 2 (7 nodes). 

      Heights:   root:2, leaves: 0.  Sum of all heights:  1*2 + 2*1 + 4*0 = 3. 

      Depths:  root: 0, leaves: 2.   Sum of all depths:  1*0  + 2*1 + 4*2 = 10. 

7. (10)  6.4.12 [6.4.11] (spaghetti sort) 

8. (  4) 6.5.10 [ 6.5.9] (Use Horner's rule for this particular case?) 

9. (10)  7.1.6 (ancestry problem).  You may NOT assume any of the following: 

·         The tree is binary 
·         The tree is a search tree (i.e. that the elements are in some particular order) 

·         The tree is balanced in any way. 

 
The tree for this problem is simply a connected directed graph with no cycles and a single source node (the root). 


