473 Levitin problems and hints HW 08

Problem 1: (15) 5.3.8 [4.4.7]

- a. Draw a binary tree with 10 nodes labeled 0, 1, ..., 9 in such a way that
 the inorder and postorder traversals of the tree yield the following lists: 9,
 3, 1, 0, 4, 2, 7, 6, 8, 5 (inorder) and 9, 1, 4, 0, 3, 6, 7, 5, 8, 2 (postorder).
 - b. Give an example of two permutations of the same n labels 0,1,...,n-1 that cannot be inorder and postorder traversal lists of the same binary tree.
 - c. Design an algorithm that constructs a binary tree for which two given lists of n labels 0,1,...,n-1 are generated by the inorder and postorder traversals of the tree. Your algorithm should also identify inputs for which the problem has no solution.

Author's Hints:

 Find the root's label of the binary tree first, and then identify the labels of the nodes in its left and right subtrees.

Problem 2: (5) 5.3.11 [4.4.10]

11. Chocolate bar puzzle Given an n-by-m chocolate bar, you need to break it into nm 1-by-1 pieces. You can break a bar only in a straight line, and only one bar can be broken at a time. Design an algorithm that solves the problem with the minimum number of bar breaks. What is this minimum number? Justify your answer by using properties of a binary tree.

Author's Hints:

11. Breaking the chocolate bar can be represented by a binary tree.

Problem 3: (5) 5.4.9 [4.5.9]

9. V. Pan [Pan78] has discovered a divide-and-conquer matrix multiplication algorithm that is based on multiplying two 70-by-70 matrices using 143,640 multiplications. Find the asymptotic efficiency of Pan's algorithm (you can ignore additions) and compare it with that of Strassen's algorithm.

Author's Hints:

The recurrence for the number of multiplications in Pan's algorithm is similar to that for Strassen's algorithm. Use the Master Theorem to find the order of growth of its solution.

Problem 4: (10) 5.5.3 [4.6.2]

3. Consider the version of the divide-and-conquer two-dimensional closest-pair algorithm in which, instead of presorting input set P, we simply sort each of the two sets P_l and P_r in nondecreasing order of their y coordinates on each recursive call. Assuming that sorting is done by mergesort, set up a recurrence relation for the running time in the worst case and solve it for n = 2^k.

Author's Hints:

3. Recall (see Section 5.1) that the number of comparisons made by mergesort in the worst case is $C_{worst}(n) = n \log_2 n - n + 1$ (for $n = 2^k$). You may use just the highest-order term of this formula in the recurrence you need to set up.

Problem 5: (5) 5.5.7 [4.6.6]

Explain how one can find point p_{max} in the quickhull algorithm analytically.

Author's Hints:

2. We traced the algorithms on smaller instances in the section.

Problems 6-7: Not from textbook

(5) If the permutations of the numbers 0-7 are numbered from 0 to 8!-1, what is the (lexicographic ordering) sequence number of the permutation 37246510?

Example sequence numbers: 01234567 has sequence number 0, 01234576 has sequence number 1, 01234657 has sequence number 2, ..., 76543210 has sequence number 8! - 1.

(5) Which permutation of 01234567 is number 25000 in lexicographic order?