MA/CSSE 473

Day 38 ® o

“~>
s T ©

>
=

Problems

Decision Problems

P and NP

Reminder of the 473 grading scale

e Takes into account that there are many hard
problems in the homework, and that exams
are somewhat difficult.

e g e

Highest Lowest Letter Course Ave rages
100.00 % 88.00 % A A 12
87.99 % 82.00 % B+ B+ 9
81.99 % 75.00 % B B 8
74.99 % 70.00 % ct C+ 8
69.99 % 64.00 % & c 7
63.99 % 58.00 % D+ D+ 2
57.99 % 52.00 % D 2 i
[]
51.99 % 0.00 % F o

‘;.

The Law of the Algorithm Jungle
e Polynomial good, exponential bad!

e The latter is obvious, the former may
need some explanation

e We say that polynomial-time problems
are tractable, exponential problems are
intractable

tractable

1. (obsalete) Capable of being handled or touched; palpable; practicable; feasible; as,
tractable measures.

"I have always found horses, an animal | am alfached fo, very tractable when

treated with humanity and steadiness.” - Mary Wollstonecraft, "A Vindication of
the Rights of Woman”

[]
®
1. Capable of being easily led, taught, or managed; docile; manageable; governable; as, '

tractable children: a tractable leamer.
e

Polynomial time vs exponential time

e What’s so good about polynomial time?

— It’s not exponential!

e We can’t say that every polynomial time algorithm has an
acceptable running time,

e but it is certain that if it doesn’t run in polynomial time, it
only works for small inputs.

— Polynomial time is closed under standard
operations.
e If f(t) and g(t) are polynomials, so is f(g(t)).
¢ also closed under sum, difference, product
e Almost all of the algorithms we have studied
run in polynomial time. E

— Except those (like permutation and subset v

generation) whose output is exponential.

Decision problems

e When we define the class P, of “polynomial-time
problems”, we will restrict ourselves to decision
problems.

e Almost any problem can be rephrased as a decision
problem.

e Basically, a decision problem is a question that has
two possible answers, yes and no.

e The question is about some input.

e A problem instance is a combination of the problem
and a specific input.

Decision problem definition

e The statement of a decision problem has two
parts:
— The instance description part defines the
information expected in the input

— The question part states the actual yes-or-no
guestion; the question refers to variables that are
defined in the instance description

Decision problem examples

e Definition: In a graph G=(V,E), a clique E is a subset of
V such that for all uand vin E, the edge (u,v) is in E.

e Clique Decision problem
— Instance: an undirected graph G=(V,E) and an integer k.
— Question: Does G contain a clique of k vertices?

e k-Clique Decision problem

— Instance: an undirected graph G=(V,E). Note that k is some
constant, independent of the problem.

— Question: Does G contain a clique of k vertices?

Decision problem example

e Definition: The chromatic number of a graph G=(V,E)
is the smallest number of colors needed to color G. so
that no two adjacent vertices have the same color

¢ Graph Coloring Optimization Problem

— Instance: an undirected graph G=(V,E).
— Problem: Find G’s chromatic number and a coloring that
realizes it
e Graph Coloring Decision Problem
— Instance: an undirected graph G=(V,E) and an integer k>0.
— Question: Is there a coloring of G that uses no more than k
colors?

e Almost every optimization problem can be__. 2

expressed in decision problem form v

Decision problem example

e Definition: Suppose we have an unlimited number of
bins, each with capacity 1.0, and n objects with sizes
Sy, » Sy Where 0 <'s, <1 (all s, rational)

e Bin Packing Optimization Problem
— Instance:s,, ..., s, as described above.

— Problem: Find the smallest number of bins into which the n
objects can be packed

e Bin Packing Decision Problem
— Instance:s,, ..., s, as described above, and an integer k.

— Question: Can the n objects be packed into k bins?

Reduction

Suppose we want to solve problem p, and there is another
problem q.

Suppose that we also have a function T that

— takes an input x for p, and

— produces T(x), an input for g such that the correct answer for p
with input x is yes if and only if the correct answer for q with
input T(X) is yes.

We then say that p is reducible to q and we write p<q.
If there is an algorithm for q, then we can compose T with
that algorithm to get an algorithm for p.

If T is a function with polynomially bounded running time,
we say that p is polynomially reducible to q and we write
P<yq.

From now on, reducible means polynomially reducible.

Classic 473 reduction

e Moldy Chocolate is reducible to 4-pile Nim

Definition of the class P

e Definition: An algorithm is polynomially bounded if its
worst-case complexity is big-O of a polynomial function
of the input size N.

— i.e. if there is a single polynomial p such that for each input of
size n, the algorithm terminates after at most p(n) steps.

e Definition: A problem is polynomially bounded if there is
a polynomially bounded algorithm that solves it

e The class P

— Pis the class of decision problems that are polynomially
bounded

— Informally (with slight abuse of notation), we
also say that polynomially bounded optimization problems are
in P >

Example of a problem in P

e Shortest Path

— Input: A weighted graph G=(V,E) with n vertices
(each edge e is labeled with a non-negative weight
w(e)), two vertices vand w and a number k.

— Question: Is there a path in G from v to w whose
total weight is < k?

e How do we know it’s in P?

Example: Clique problems

It is known that we can determine whether a graph
with n vertices has a k-clique in time O(k2nk).
Clique Decision problem 1

— Instance: an undirected graph G=(V,E) and an integer k.
— Question: Does G contain a clique of k vertices?

Clique Decision problem 2

— Instance: an undirected graph G=(V,E). Note that k is some
constant, independent of the problem.

— Question: Does G contain a clique of k vertices?
Are either of these decision problems in P?

The problem class NP

e NP stands for Nondeterministic Polynomial
time.

e The first stage assumes a “guess” of a possible
solution.

e Can we verify whether the proposed solution
really is a solution in polynomial time?

More details

e Example: Graph coloring. Given a graph G with
N vertices, can it be colored with k colors?

e A solution is an actual k-coloring.

e A “proposed solution” is simply something that
is in the right form for a solution.

— For example, a coloring that may or may not have
only k colors, and may or may not have distinct
colors for adjacent nodes.

e The problem is in NP iff there is a polynomial-
time (in N) algorithm that can check a s—
proposed solution to see ifitreallyisa =< o

solution. v

Still more details

e A nondeterministic algorithm has two phases
and an output step.

e The nondeterministic “guessing” phase, in
which the proposed solution is produced. It
will be a solution if there is one.

e The deterministic verifying phase, in which the
proposed solution is checked to see if it is
indeed a solution.

e QOutput “yes” or “no”. -

pseudocode

void checker(String input)

// input is an encoding of the problem instance.
String s = guess(); //sis some “proposed solution”
boolean checkOK = verify(input, s);
if (checkOK)

print “yes”

e |f the checker function would print “yes” for any
string s, then the non-deterministic algorithm
answers “yes”. Otherwise, the non-deterministic
algorithm answers “no”. oo

The problem class NP

e NP is the class of decision problems for which
there is a polynomially bounded
nondeterministic algorithm.

Some NP problems

e Graph coloring
e Bin packing
e Cligue

10

Problem Class Containment

e Define Exp to be the set of all decision problems that
can be solved by a deterministic exponential-time
algorithm.

e Then P < NP C Exp.

— P c NP. A deterministic polynomial-time algorithm is (with
a slight modification to fit the form) a polynomial-time
nondeterministic algorithm (skip the guessing part).

— NP c Exp. It's more complicated, but we basically turn a
non-deterministic polynomial-time algorithm into a
deterministic exponential-time algorithm, replacing the
guess step by a systematic trial of all possibilities.

The S10° Question

* The big question is , does P=NP?

e The P=NP? question is one of the most famous
unsolved math/CS problems!

* In fact, there is a million dollar prize for the person
who solves it. http://www.claymath.org/millennium/

e What do computer scientists THINK the answer is?

11

August 6, 2010

My 33 wedding anniversary

65t anniversary of the atomic bombing of Hiroshima

The day Vinay Dolalikar announced a proof that P # NP

By the next day, the web was a'twitter!

Gaps in the proof were found.

If it had been proven, Dolalikar would have been $1,000,000 richer!
— http://www.claymath.org/millennium/
— http://www.claymath.org/millennium/P_vs NP/

Other Millennium Prize problems:

— Poincare Conjecture (solved)

Birch and Swinnerton-Dyer Conjecture

Navier-Stokes Equations

Hodge Conjecture

Riemann Hypothesis

Yang-Mills Theory °

More P vs NP links

The Minesweeper connection:

— http://www.claymath.org/Popular Lectures/Minesweeper/

November 2010 CACM editor's article:

— http://cacm.acm.org/magazines/2010/11/100641-on-p-np-
and-computational-complexity/fulltext

— http://www.rose-
hulman.edu/class/csse/csse473/201110/Resources/CACM-
PvsNP.pdf

From the same magazine: Using Complexity to Protect

Elections:

— http://www.rose-
hulman.edu/class/csse/csse473/201110/Resources/Protectin
gElections.pdf

12

Other NP problems

Job scheduling with penalties
Suppose n jobs J;, ...,J are to be executed one at a
time.

— Job J, has execution time t, completion deadline d,, and
penalty p; if it does not complete on time.

— A schedule for the jobs is a permutation 7w of {1, ..., n},
where J_, is the i*" job to be run.

— The total penalty for this schedule is P_, the sum of the
pi based on this schedule.

Scheduling decision problem:

— Instance: the above parameters, and a non-
negative integer k.

— Question: Is there a schedule © with P_<k?

Other NP problems

Knapsack

Suppose we have a knapsack with capacity C, and n objects
with sizes s, ...,s,, and profits p,, ...,p,.

Knapsack decision problem:

— Instance: the above parameters, and a non-negative integer k.

— Question: Is there a subset of the set of objects that fits in the
knapsack and has a total profit that is at least k?

13

Other NP problems

e Subset Sum Problem

— Instance: A positive integer C and n positive
integers sy, ...,S,, .

— Question: Is there a subset of these integers whose
sum is exactly C?

Other NP problems

CNF Satisfiability problem (introduction)

A propositional formula consists of boolean-valued

variables and operators such as A (and), v (or) , negation

(I represent a negated variable by showmg itin

boldface), and — (implication).

It can be shown that every propositional formula is

equivalent to one that is in conjunctive normal form.

— A literal is either a variable or its negation.

— A clause is a sequence of one or more literals, separated by v.

- ﬁ‘ CNF formula is a sequence of one or more clauses, separated
Y A.

— Example (pvagvVvr)A(pvsvgVvt)Aa(svw)

For any finite set of propositional variables, a truth

assignment is a function that maps each variable to

{true, false}.

A truth assignment satisfies a formula if it makes the ~ =

value of the entire formula true. =
— Note that a truth assignment satisfies a CNF v
formula if and only if it makes each clause true.

14

Other NP problems

e Satisfiability problem:

e Instance: A CNF propositional formula f
(containing n different variables).

e Question: Is there a truth assignment that
satisfies f?

A special case

e 3-Satisfiability problem:

e A CNF formula is in 3-CNF if every clause
has exactly three literals.

* |Instance: A 3CNF propositional formula f
(containing n different variables).

e Question: Is there a truth assignment that
satisfies f?

15

NP-hard and NP-complete problems
A problem is NP-hard if every problem in NP is reducible
to it.

A problem is NP-complete if it is in NP and is NP-hard.
Showing that a problem is NP complete is difficult.

— Has only been done directly for a few problems.

— Example: 3-satisfiability

If p is NP-hard, and p<,q, then qis NP-hard.

So most NP-complete problems are shown to be so by
showing that 3-satisfiability (or some other known NP-
complete problem) reduces to them.

Examples of NP-complete problems

o satisfiability (3-satisfiability)

e clique (and its dual, independent set).

e graph 3-colorability

¢ Minesweeper: is a certain square safe on an n x n board?
— http://for.mat.bham.ac.uk/R.W.Kaye/minesw/ordmsw.htm

e hamiltonian cycle

e travelling salesman

e register allocation

¢ scheduling

e bin packing

e knapsack

€

16

