

Reminder of the 473 grading scale

 Takes into account that there are many hard problems in the homework, and that exams are somewhat difficult.

	Lun graa	0 1011010
Highest	Lowest	Letter
100.00 %	88.00 %	А
87.99 %	82.00 %	B+
81.99 %	75.00 %	В
74.99 %	70.00 %	C+
69.99 %	64.00 %	С
63.99 %	58.00 %	D+
57.99 %	52.00 %	D
51.99 %	0.00 %	F

Course Averages		
Α	12	
B+	9	
В	8	
C+	8	
С	7	
D+	2	
D	1	
F	1	

The Law of the Algorithm Jungle

- Polynomial good, exponential bad!
- The latter is obvious, the former may need some explanation
- We say that polynomial-time problems are tractable, exponential problems are intractable

tractable

- (obsolete) Capable of being handled or touched; palpable; practicable; feasible; as, tractable measures.
 - "I have always found horses, an animal I am attached to, very tractable when treated with humanity and steadiness." Mary Wollstonecraft, "A Vindication of the Rights of Woman"
- Capable of being easily led, taught, or managed; docile; manageable; governable; as, tractable children; a tractable learner.

Polynomial time vs exponential time

- What's so good about polynomial time?
 - It's not exponential!
 - We can't say that every polynomial time algorithm has an acceptable running time,
 - but it is certain that if it *doesn't* run in polynomial time, it only works for small inputs.
 - Polynomial time is closed under standard operations.
 - If f(t) and g(t) are polynomials, so is f(g(t)).
 - also closed under sum, difference, product
- Almost all of the algorithms we have studied run in polynomial time.
 - Except those (like permutation and subset generation) whose output is exponential.

Decision problems

- When we define the class P, of "polynomial-time problems", we will restrict ourselves to *decision* problems.
- Almost any problem can be rephrased as a decision problem.
- Basically, a decision problem is a question that has two possible answers, yes and no.
- The question is about some input.
- A *problem instance* is a combination of the problem and a specific input.

Decision problem definition

- The statement of a decision problem has two parts:
 - The *instance description* part defines the information expected in the input
 - The question part states the actual yes-or-no question; the question refers to variables that are defined in the instance description

Decision problem examples

- Definition: In a graph G=(V,E), a clique E is a subset of V such that for all u and v in E, the edge (u,v) is in E.
- Clique Decision problem
 - Instance: an undirected graph G=(V,E) and an integer k.
 - Question: Does G contain a clique of k vertices?
- k-Clique Decision problem
 - Instance: an undirected graph G=(V,E). Note that k is some constant, independent of the problem.
 - Question: Does G contain a clique of k vertices?

Decision problem example

- **Definition:** The *chromatic number* of a graph G=(V,E) is the smallest number of colors needed to color G. so that no two adjacent vertices have the same color
- Graph Coloring Optimization Problem
 - Instance: an undirected graph G=(V,E).
 - Problem: Find G's chromatic number and a coloring that realizes it
- Graph Coloring Decision Problem
 - Instance: an undirected graph G=(V,E) and an integer k>0.
 - Question: Is there a coloring of G that uses no more than k colors?
- Almost every optimization problem can be expressed in decision problem form

Decision problem example

- Definition: Suppose we have an unlimited number of bins, each with capacity 1.0, and n objects with sizes s₁, ..., s_n, where 0 < s_i ≤ 1 (all s_i rational)
- Bin Packing Optimization Problem
 - Instance: s₁, ..., s_n as described above.
 - Problem: Find the smallest number of bins into which the n objects can be packed
- Bin Packing Decision Problem
 - Instance: s₁, ..., s_n as described above, and an integer k.
 - Question: Can the n objects be packed into k bins?

Reduction

- Suppose we want to solve problem **p**, and there is another problem **q**.
- Suppose that we also have a function T that
 - takes an input x for **p**, and
 - produces T(x), an input for q such that the correct answer for p with input x is yes if and only if the correct answer for q with input T(X) is yes.
- We then say that p is reducible to q and we write p≤q.
- If there is an algorithm for **q**, then we can compose T with that algorithm to get an algorithm for **p**.
- If T is a function with polynomially bounded running time, we say that p is polynomially reducible to q and we write p≤pq.
- From now on, reducible means polynomially reducible.

Classic 473 reduction

• Moldy Chocolate is reducible to 4-pile Nim

Definition of the class P

- **Definition:** An algorithm is *polynomially bounded* if its worst-case complexity is big-O of a polynomial function of the input size N.
 - i.e. if there is a single polynomial p such that for each input of size n, the algorithm terminates after at most p(n) steps.
- Definition: A problem is polynomially bounded if there is a polynomially bounded algorithm that solves it
- The class P
 - P is the class of decision problems that are polynomially bounded
 - Informally (with slight abuse of notation), we also say that polynomially bounded optimization problems are in P

Example of a problem in P

- Shortest Path
 - Input: A weighted graph G=(V,E) with n vertices
 (each edge e is labeled with a non-negative weight w(e)), two vertices v and w and a number k.
 - Question: Is there a path in G from v to w whose total weight is ≤ k?
- How do we know it's in P?

Example: Clique problems

- It is known that we can determine whether a graph with n vertices has a k-clique in time O(k²n^k).
- Clique Decision problem 1
 - Instance: an undirected graph G=(V,E) and an integer k.
 - Question: Does G contain a clique of k vertices?
- Clique Decision problem 2
 - Instance: an undirected graph G=(V,E). Note that k is some constant, independent of the problem.
 - Question: Does G contain a clique of k vertices?
- Are either of these decision problems in *P*?

The problem class NP

- *NP* stands for Nondeterministic Polynomial time.
- The first stage assumes a "guess" of a possible solution.
- Can we verify whether the proposed solution really is a solution in polynomial time?

More details

- Example: Graph coloring. Given a graph G with N vertices, can it be colored with k colors?
- A solution is an actual k-coloring.
- A "proposed solution" is simply something that is in the right form for a solution.
 - For example, a coloring that may or may not have only k colors, and may or may not have distinct colors for adjacent nodes.
- The problem is in NP iff there is a polynomialtime (in N) algorithm that can check a proposed solution to see if it really is a solution.

Still more details

- A nondeterministic algorithm has two phases and an output step.
- The nondeterministic "guessing" phase, in which the proposed solution is produced. It will be a solution if there is one.
- The deterministic verifying phase, in which the proposed solution is checked to see if it is indeed a solution.
- Output "yes" or "no".

pseudocode

```
void checker(String input)
```

// input is an encoding of the problem instance.
String s = guess(); // s is some "proposed solution"
boolean checkOK = verify(input, s);
if (checkOK)
 print "yes"

• If the *checker* function would print "yes" for any string s, then the non-deterministic algorithm answers "yes". Otherwise, the non-deterministic algorithm answers "no".

The problem class NP

 NP is the class of decision problems for which there is a polynomially bounded nondeterministic algorithm.

Some NP problems

- Graph coloring
- Bin packing
- Clique

Problem Class Containment

- Define Exp to be the set of all decision problems that can be solved by a deterministic exponential-time algorithm.
- Then $P \subseteq NP \subseteq Exp$.
 - P⊆NP. A deterministic polynomial-time algorithm is (with a slight modification to fit the form) a polynomial-time nondeterministic algorithm (skip the guessing part).
 - NP
 Exp. It's more complicated, but we basically turn a
 non-deterministic polynomial-time algorithm into a
 deterministic exponential-time algorithm, replacing the
 guess step by a systematic trial of all possibilities.

The \$10⁶ Question

- The big question is , does P=NP?
- The **P=NP?** question is one of the most famous unsolved math/CS problems!
- In fact, there is a million dollar prize for the person who solves it. http://www.claymath.org/millennium/
- What do computer scientists THINK the answer is?

August 6, 2010

- My 33rd wedding anniversary
- 65th anniversary of the atomic bombing of Hiroshima
- The day Vinay Dolalikar announced a proof that P ≠ NP
- By the next day, the web was a'twitter!
- Gaps in the proof were found.
- If it had been proven, Dolalikar would have been \$1,000,000 richer!
 - http://www.claymath.org/millennium/
 - http://www.claymath.org/millennium/P vs NP/
- Other Millennium Prize problems:
 - Poincare Conjecture (solved)
 - Birch and Swinnerton-Dyer Conjecture
 - Navier-Stokes Equations
 - Hodge Conjecture
 - Riemann Hypothesis
 - Yang-Mills Theory

More P vs NP links

- The Minesweeper connection:
 - http://www.claymath.org/Popular Lectures/Minesweeper/
- November 2010 CACM editor's article:
 - http://cacm.acm.org/magazines/2010/11/100641-on-p-npand-computational-complexity/fulltext
 - http://www.rosehulman.edu/class/csse/csse473/201110/Resources/CACM-PvsNP.pdf
- From the same magazine: Using Complexity to Protect Elections:
 - http://www.rosehulman.edu/class/csse/csse473/201110/Resources/Protectin gElections.pdf

Other NP problems

- Job scheduling with penalties
- Suppose n jobs J₁, ...,J_n are to be executed one at a time.
 - Job $J_{\rm i}$ has execution time $t_{\rm i}$, completion deadline $d_{\rm i}$, and penalty $p_{\rm i}$ if it does not complete on time.
 - A schedule for the jobs is a permutation π of {1, ..., n}, where $J_{\pi(i)}$ is the i^{th} job to be run.
 - The total penalty for this schedule is P_{π} , the sum of the pi based on this schedule.
- Scheduling decision problem:
 - Instance: the above parameters, and a nonnegative integer k.
 - Question: Is there a schedule π with $P_{\pi} \le k$?

Other NP problems

- Knapsack
- Suppose we have a knapsack with capacity C, and n objects with sizes s₁, ...,s_n and profits p₁, ...,p_n.
- Knapsack decision problem:
 - Instance: the above parameters, and a non-negative integer k.
 - Question: Is there a subset of the set of objects that fits in the knapsack and has a total profit that is at least k?

Other NP problems

- Subset Sum Problem
 - Instance: A positive integer C and n positive integers s₁, ...,s_n.
 - Question: Is there a subset of these integers whose sum is exactly C?

Other NP problems

- CNF Satisfiability problem (introduction)
- A propositional formula consists of boolean-valued variables and operators such as ∧ (and), ∨ (or), negation (I represent a negated variable by showing it in boldface), and → (implication).
- It can be shown that every propositional formula is equivalent to one that is in *conjunctive normal form*.
 - A literal is either a variable or its negation.
 - A clause is a sequence of one or more literals, separated by ∨.
 - A CNF formula is a sequence of one or more clauses, separated by ∧.
 - Example $(p \lor q \lor r) \land (p \lor s \lor q \lor t) \land (s \lor w)$
- For any finite set of propositional variables, a truth assignment is a function that maps each variable to {true, false}.
- A truth assignment satisfies a formula if it makes the value of the entire formula true.
 - Note that a truth assignment satisfies a CNF formula if and only if it makes each clause true.

Other NP problems

- Satisfiability problem:
- Instance: A CNF propositional formula f (containing n different variables).
- Question: Is there a truth assignment that satisfies f?

A special case

- 3-Satisfiability problem:
- A CNF formula is in 3-CNF if every clause has exactly three literals.
- Instance: A 3CNF propositional formula f (containing n different variables).
- Question: Is there a truth assignment that satisfies f?

NP-hard and NP-complete problems

- A problem is NP-hard if every problem in NP is reducible to it.
- A problem is NP-complete if it is in NP and is NP-hard.
- Showing that a problem is NP complete is difficult.
 - Has only been done directly for a few problems.
 - Example: 3-satisfiability
- If **p** is *NP*-hard, and $p \le_p q$, then **q** is *NP*-hard.
- So most NP-complete problems are shown to be so by showing that 3-satisfiability (or some other known NPcomplete problem) reduces to them.

Examples of NP-complete problems

- satisfiability (3-satisfiability)
- clique (and its dual, independent set).
- graph 3-colorability
- Minesweeper: is a certain square safe on an n x n board?
 - http://for.mat.bham.ac.uk/R.W.Kaye/minesw/ordmsw.htm
- hamiltonian cycle
- travelling salesman
- register allocation
- scheduling
- bin packing
- knapsack

