6,8:15

MA/CSSE 473
Day 37 ® o

“>
. -~ -~
Student Questions > .- .

Kruskal Data
Structures and
detailed algorithm

Disjoint Set ADT

Data Structures for Kruskal

e A sorted list of edges (edge list, not adjacency list)
— Edge e has fields e.v and e.w (#s of its end vertices)

e Disjoint subsets of vertices, representing the
connected components at each stage.
— Start with n subsets, each containing one vertex.
— End with one subset containing all vertices.

e Disjoint Set ADT has 3 operations:
— makeset(i): creates a singleton set containing vertex i.

— findset(i): returns the "canonical" member of its subset.
e |l.e., ifiandjare elements of the same subset,

findset(i) == findset(j)
— union(i, j): merges the subsets containing i and j

into a single subset. {v

Example of operations

e makeset (1)

e makeset (2) * union(4, 6)
e makeset (3) * union (1,3)
e makeset (4) * union(4, 5)
e makeset (5) e findset(2)
e makeset (6) ¢ findset(5)

What are the sets after these operations?

Kruskal Algorithm

Assume vertices are numbered 1...n What can we say
(n=1V]) about efficiency of

Sort edge list by weight (increasing order this algorithm (in
for ig: 1 yn_ ght | =) terms of n=|V| and

makeset(i) m=|E[)?
i, count, result = 1, 0, []

while count < n-1:
1T findset(edgelist[i].v) !=
findset(edgelist|i].w):
result += [edgelist[i]]
count += 1
union(edgelist[i].v, edgelist[i].-w)

1 += 1
® 8
return result "N o

Implement Disjoint Set ADT

e Each disjoint set is a tree, with the "marked"
(canonical) element as its root
e Efficient representation of these trees:
— an array called parent
— parent[i] contains the index of i’s parent.
— If i is a root, parent[i]=i
5 1 7
/ \ / \
2 4
/

8

[112(3|4|5|6]|7 . -

parent[i]| 1[5 |7 |5|5|7|7 v

Using this representation

def makesetl(i): def findsetl(i):

makeset(i): parent[i] = i while i != parent[i]:
. . i = parent[i
findset(i): return ? [i]

mergetrees(i,j):

— assume that i and j are the marked elements from different

sets. def mergetreesl(i,j):
union(i,j): parent[i] = j

— assume that i and j are elements from different sets

def unionl(i,j):

8

mergetreesl(findsetl(i), findsetl(j))

/7\ Write these procedures on the board

5
/\ 1
4 6 4 T1T213alsle]7

parent[i]l 1 | 5|7 |5|5| 7|7

4

Analysis

Assume that we are going to do n makeset
operations followed by m union/find
operations

time for makeset?

worst case time for findset?

worst case time for union?

Worst case for all m union/find operations?

worst case for total?
e Whatif m<n? - -

e Write the formula to use min v

Can we keep the trees from growing so fast?
e Make the shorter tree the child of the taller one
e What do we need to add to the representation?
e rewrite makeset, mergetrees.

e makeset2(i)f def mergetrees2(i,j):

parent[i] = i if height[i] < height[iD:
height[i] = 0 e o
elif height[i] > height[j]:
parent[j] = i
else:
¢ findset & union parent[i] = j
are unchanged. height[j] = height[j] + 1

e What can we say about the maximum height «

of a k-node tree? v

Theorem: max height of a k-node tree T
produced by these algorithms is |_Ig k]

e Base case...
e Induction hypothesis...
¢ Induction step:

Let T be a k-node tree

T is the union of two trees:

T, with k; nodes and height h,
T, with k, nodes and height h,

What can we about the heights of these trees?
Case 1: h,zh,. Height of T is
Case 2: h;=h,. WLOG Assume k;2k,. Then k,<k/2. Height of treeis 1 +h2 < ...

Added after class because we did not get to it:

1+h2<=1+|_|gk2J<=1+|_ng/2J=1+|_ng-1J=|_ngJ

Worst-case running time

e Again, assume n makeset operations, followed
by m union/find operations.

e Ifm>n

e Ifm<n

€

Speed it up a little more

e Path compression: Whenever we do a findset
operation, change the parent pointer of each
node that we pass through on the way to the
root so that it now points directly to the root.

e Replace the height array by a rank array, since
it now is only an upper bound for the height.

e Look at makeset, findset, mergetrees (on next
slides)

Makeset

This algorithm represents the set {i} as a one-node
tree and initializes its rank to O.

def makeset3(1):
parent[i] = 1
rank[1] = O

Findset
e This algorithm returns the root of the tree to
which i belongs and makes every node on the

path from i to the root (except the root itself)
a child of the root.

def findset(i):

root = 1

while root != parent|[root]:
root = parent[root]

J = parent[i]

while j = root:
parent[1] = root
i =] =
J = parent[i] -~ e

return root v

Mergetrees

This algorithm receives as input the roots of two
distinct trees and combines them by making the
root of the tree of smaller rank a child of the other
root. If the trees have the same rank, we arbitrarily
make the root of the first tree a child of the other
root.
def mergetrees(i,j) :
if rank[i] < rank[j]:
parent[i] = j
elif rank[i] > rank[j]:
parent[j] = 1
else:
parent[i] = j -

rank[j] = rank[j] + 1 v

Analysis

e |t's complicated!
e R.E. Tarjan proved (1975)*:

— Lett=m+n

— Worst case running time is ©(t a(t, n)), where
a is a function with an extremely slow growth rate.

— Tarjan's a:
— a(t, n) <4 forall n < 1019728

e Thus the amortized time for each operation is
essentially constant time.

Accordmg to Algorithmsby R. Johnsonbaugh and M. Schaefe&_ :
2004, Prentice-Hall, pages 160-161

