MA/CSSE 473
Day 31 ® o

L1
o .«-’ -~

Student questions
Data Compression

Minimal Spanning
Tree Intro

More important than ever ...
This presentation repeats my CSSE 230 presentation

DATA COMPRESSION

Data (Text) Compression

YOU SAY GOODBYE. I SAY HELLO. HELLO, HELLO. I DON"T KNOW WHY YOU SAY GOODBYE, 1 SAY HELLO.

Letter frequencies

SPACE 17 A 4 U 2

(@) 12 S 4 w 2

Y 9 | 3 N 2

L 8 D 3 K 1 b
E 6 COMMA |2 T 1

H 5 B 2 APOSTROPHE |1

PERIOD | 4 G 2

*There are 90 characters altogether.

*How many total bits in the ASCII representation of this string?

*\We can get by with fewer bits per character (custom code)
eHow many bits per character? How many for entire message?
*Do we need to include anything else in the message? -
*How to represent the table? " g

1. count W
2. ASCII code for each character How to do better? 1-2

Compression algorithm: Huffman encoding

e Named for David Huffman
— http://en.wikipedia.org/wiki/David A. Huffman
— Invented while he was a graduate student at MIT.

— Huffman never tried to patent an invention from his
work. Instead, he concentrated his efforts on
education.

— In Huffman's own words, "My products are my
students."

¢ Principles of variable-length character codes:
— Less-frequent characters have longer codes
— No code can be a prefix of another code

e We build a tree (based on character frequencies)
that can be used to encode and decode messages 2 °

Variable-length Codes for Characters

e Assume that we have some routines for
packing sequences of bits into bytes and
writing them to a file, and for unpacking bytes
into bits when reading the file
— Weiss has a very clever approach:

e BitOutputStream and BitlnputStream

e methods writeBitand readBit allow us to
logically read or write a bit at a time

A Huffman code: HelloGoodbye message

C:\PersonaliCourses\CS-230%java-sources>type HelloGoodbyeOneLine
vYOoU SAY GOODBYE. I SAY HELLO. HELLC, HELLO. I DON'T KNOW WHY YOU SAY GOCDEYE, I SAY HELLO

C:\Personal\Courses\CS—ZSOhjava—source)java HuffmanDS <HelloGoodbyeOneLine

Encoding of ig 00 (frequency was 17, length of code is 2)

Encoding of . is 0100 (frequency was 4, length of code is 4)

Encocding of ig 0101 (frecuency was 5, length of code iz 4)

Encoding of ig 011 (frequency was 2, length of code is 3)

Encoding of is 100000 (frequency was 1, length of code is &)

Encoding of ig 1000010 (frequency was 1, length of code is 7)

Encoding of is 1000011 (frequency was 1, length of code is 7)

Encocding of ig 10001 (frequency was 3, length of code is 5)

Encoding of ig 1001 (frequency was 6, length of code iz 4)

Encoding of is 101 (frequency was 12, length of code is 3)

Encocding of ig 11000 (frequency was 3, length of code is 5)

Encoding of ig 110010 (frequency was 2, length of code iz &)

Encoding of is 110011 (frequency was 2, length of code iz €)

Encoding of is 11010 (frequency was 4, length of code is &)

Encoding of is 11011 (frequency was 4, length of code is 5)

Encoding of ig 111000 (frecuency was length of code iz &)

Encoding of ig 111001 (frequency was length of code iz &)
)
)

WHOED -3 &< o

Decode a

Encoding of is 111010 (frequency was length of code is 6 n
Encocding of ig 111011 (frecuency was length of code iz 6
Encoding of

Total bits required for message: 351

2!
2y
2,
2!

"message

HEZ2acEus

ig 1111 (frequency was &, length of code iz 4)

Draw part

of the Tree

Build the tree for a smaller message

oStart with a separate tree for each
character (in a priority queue)

*Repeatedly merge the two lowest
(total) frequency trees and insert new
tree back into priority queue

*Use the Huffman tree to encode
NATION.

m < > O Z 0 ==
00w wWwWN R BR

Huffman codes are provably optimal

among all single-character codes

What About the Code Table?

e When we send a message, the code table can
basically be just the list of characters and
frequencies
— Why?

e Three or four bytes per character
— The character itself.

— The frequency count.
e End of table signaled by O for char and count.
e Tree can be reconstructed from this table. -

e The rest of the file is the compressed mes%
9

Huffman Java Code Overview

e This code provides human-readable output to help us
understand the Huffman algorithm.

e We will deal with Huffman at the abstract level; "real" code to
do actual file compression is found in Weiss chapter 12.

¢ | am confident that you can figure out the other details if you
need them.

e Based on code written by Duane Bailey, in his book
JavaStructures.

e A great thing about this example is the use of various data
structures (Binary Tree, Hash Table, Priority Queue).

| do not want to get caught up in lots of code details
in class, so | will give a quick overview; you should

read details of the code on your own.

Some Classes used by Huffman

e Leaf: Represents a leaf node in a Huffman tree.

— Contains the character and a count of how many times it
occurs in the text.

e HuffmanTree: Each node contains the total weight of
all characters in the tree, and either a leaf node or a
binary node with two subtrees that are Huffman trees.

— The contents field of a non-leaf node is never used; we only
need the total weight.

— compareTo returns its result based on comparing the
total weights of the trees.

Classes used by Huffman, part 2

¢ Huffman: Contains main The algorithm:
— Count character frequencies and build a list of Leaf nodes containing
the characters and their frequencies
— Use these nodes to build a sorted list (treated like a priority queue) of
single-character Huffman trees
- do
» Take two smallest (in terms of total weight) trees from the
sorted list
e Combine these nodes into a new tree whose total weight is
the sum of the weights of the new tree
e Put this new tree into the sorted list

while there is more than one tree left

The one remaining tree will be an optimal tree B

[]
for the entire message v

Leaf node class for Huffman Tree

class Leaf { // Leaf node of a Huffman tree.

char ch; // the character represented by this node
int frequency; // frequency of char in the message.

= public Leaf(char c, int freq) {
ch = ¢;
frequency = freq;

The code on this slide (and the next four
slides) produces the output shown on the

A Huffman code: HelloGoodbye message
slide.

Highlights of the HuffmanTree class

class HuffmanTree implements Comparable<HuffmanTree> {
BinaryNode root; // root of ftree
int totalWeight; // weight of tree
static int totalBitsNeeded;
// bits needed to represent entire message
// (not including code table).

public HuffmanTree(leaf e) {
root = new BinaryNode(e, null, null);
totallleight = e.frequency;

¥

public HuffmanTree(HuffmanTree left, HuffmanTree right) {
// pre: left and right non-null
// post: merge two trees together and add their weights
this.totalWeight = left.totalWeight + right.totalWeight;
| root = new BinaryNode(null, left.root, right.root);
¥

e e
public int compareTo(HuffmanTree other) { ‘=" &

=
return (this.totalWeight - other.totalWeight); :
} .

Printing a HuffmanTree

public void print() {
// post: print out strings associated with characters in tree
totalBitsNeeded = 8;
print(this.root, "");
System.out.println("Total bits required for message:
+ totalBitsNeeded);

}

protected static void print(BinarvNode r, String representation) {
// post: print out strings associated with chars in tree r,
I/ prefixed by representation
if (r.getleft() != null) {
// interior node
print(r.getlLeft(), representation + "@"); // append a @
print(r.getRight(), representation + "1"); // append a 1
} else { // leaf; print encoding
Leaf e = (Leaf) r.getElement();
System.out.println("Encoding of " + e.ch + " is " + representation
+ " (frequency was " + e.frequency + ", length of code is
+ representation.length() + ")");
totalBitsNeeded += (e.frequency * representation.length());

Highlights of Huffman class part 1

- import java.util.HashMap;
import java.util.Scanner;
import java.util.PriorityQueue;

public class Huffman {

3 public static void main(String args[]) throws Exception {
Scanner sc = new Scanner(System.in);
HashMap<Character, Integer> freq = new HashMap<Character, Integer>();
String oneline; // current input line.
// First read the data and count characters
// Go through the input line, one character at a time.
System.out.println("Message to be encoded (CTRL-Z to end):");
while (sc.hasNext()) {
oneline = sc.next();
for (int i = @; i < oneline.length(); i++) {
char ¢ = oneline.charAt(i);
if (freq.containsKey(c))
freg.put(c, freqg.get(c) + 1);
else
J/ first time we've seen c
freq.put(c, 1);

Remainder of the main() method

// Now the table of frequencies of each character is complete.
// insert each character into a single-node Huffman tree
PriorityQueue<HuffmanTree> treeQueue = new PriorityQueue<HuffmanTree>();
for (char c : freq.keySet())

treeQueue.add(new HuffmanTree(new Leaf(c, freg.get(c)))):

HuffmanTree smallest, secondSmallest;

/[merge trees in pairs until only one tree remains
while (true) {
smallest = treeQueue.poll();
secondSmallest = treeQueue.poll();
if (secondSmallest == null)
break;
J// add bigger tree containing both to the sorted list.
treeQueue.add(new HuffmanTree(smallest, secondSmallest));

¥

// print the only tree that is left.
smallest.print()};

Summary

e The Huffman code is provably optimal among all
single-character codes for a given message.
e Going farther:
— Look for frequently occurring sequences of characters
and make codes for them as well.
e Compression for specialized data (such as sound,
pictures, video).

— Okay to be "lossy" as long as a person seeing/hearing
the decoded version can barely see/hear the
difference.

Kruskal and Prim

ALGORITHMS FOR FINDING A
MINIMAL SPANNING TREE

Kruskal’s algorithm

e A greedy algorithm.

e To find a MST (minimal Spanning Tree):

e Start with a graph T containing all of G’s n
vertices and none of its edges.

e fori=1ton—-1:

— Among all of G’s edges that can be added without
creating a cycle, add to T an edge that has minimal
weight.

— Details of Data Structures for Kruskal later

10

11

Prim’s algorithm

e Start with T as a single vertex of G (which is a
MST for a single-node graph).

e fori=1ton-1:
— Among all edges of G that connect a vertex in T to

a vertex that is not yet in T, add a minimum-weight
edge (and the vertex at the other end of T).

— Details of Data Structures later

Ry

’ I:Ib i z " 4 ﬁ%yr ()] / | i) ‘I 4 J149("
NP SN NV VNV Example of
L 1 Prim’s
algorithm

o

12

Next steps ...

e These algorithms seem simple enough, but do
they really produce a MST?

e We begin with a lemma that is the crux of both
proofs.

e Then we see how to represent the data so we
can calculate it efficiency

MST lemma

Let G be a weighted connected graph,
let T be any MST of G,

let G’ be any subgraph of T, and

let C be any connected component of G.

Then:

— If we add to C an edge e=(v,w) that has minimum-weight
among all edges that have one vertex in C and the other
vertex not in C,

— G has an MST that contains the union of G' and e.

[WLOG, v is the vertex of e that is in C, and w is not in C]
Summary: If G'is a subgraph of an MST, so is G'\U{e}

13

