## Announcements:

1. HW 12 due Thursday, Oct 30 .
2. I will be off-campus Oct 30 in the afternoon and most of Oct 31 (I hope to be here for hours 9-10) due to my IVIG infusions.
3. No class meeting Oct 31 .
4. Exam 2 Tuesday Nov 4 in class. Exam specification is linked from Day 34 in the schedule page.
5. HW 13 due Thursday, Nov 6, HW 14 Monday Nov 10.
6. Final Exam Monday Nov 17 at 6:00 PM.
7. In my office today: hours $6,8,9$.

## Main ideas from today: Optimal Binary Search trees.

1. Formally, an Extended Binary Tree (EBT) is either
a. an external node, or
b. an (internal) root node and two EBTs $\mathrm{T}_{\mathrm{L}}$ and $\mathrm{T}_{\mathrm{R}}$
2. Optimal BST notation:
a. Keys are $K_{1}, K_{2}, \ldots, K_{n}$
b. Let v be the value we are searching for
c. For $\mathrm{i}=1, \ldots, \mathrm{n}$, let $\mathrm{a}_{\mathrm{i}}$ be the probability that v is key $\mathrm{K}_{\mathrm{i}}$
d. For $\mathrm{i}=1, \ldots, \mathrm{n}-1$, let $\mathrm{b}_{\mathrm{i}}$ be the probability that $\mathrm{K}_{\mathrm{i}}<\mathrm{v}<\mathrm{K}_{\mathrm{i}+1}$
e. Similarly, let $\mathrm{b}_{0}$ be the probability that $\mathrm{v}<\mathrm{K}_{1}$,
and $b_{n}$ the probability that $v>K_{n}$

$$
\sum_{i=1}^{n} a_{i}+\sum_{i=0}^{n} b_{i}=1
$$

f. We can also just use frequencies instead of probabilities when finding the optimal tree (and divide by their sum to get the probabilities if we ever need them). That is what we will do.
3. We want to minimize weighted path length,

$$
C(T)=\sum_{i=1}^{n} a_{i}\left[1+\operatorname{depth}\left(x_{i}\right)\right]+\sum_{i=0}^{n} b_{i}\left[\operatorname{depth}\left(y_{i}\right)\right]
$$

4. You will show by induction (HW 12) that $\mathrm{C}(\mathrm{T})$ can be calculated by the recursive formula
a. $\quad C($ empty $E B T)=0$,
b. If $T$ has a root and two subtrees $T_{L}$ and $T_{R}, C(T)=C\left(T_{L}\right)+C\left(T_{R}\right)+\Sigma a_{i}+\Sigma b_{i}$,
c. where the summations are over all $a_{i}$ and $b_{i}$ for nodes in $T$
5. Consider these Frequencies of vowel occurrence in English A, E, I, O, U

> | a's: $\quad 32, \quad 42, \quad 26, \quad 32, \quad 12$ |
| :--- |
| b's: |
| 0, |

6. Define the quantities $\mathrm{W}_{\mathrm{ij}}$ that help with the calculation of the $\mathrm{C}_{\mathrm{i} j}$.
7. $\mathrm{R}_{\mathrm{ij}}$ (an integer) is the index of the best key to use as a root of the optimal tree.

It is the value of k that minimizes
8. What is the running time of the optimalBST algorithm, as a function of the number of keys?
9. What do we mean by "greedy" algorithm?

