

B-trees

- We will do a quick overview.
- For the whole scoop on B-trees (Actually B+trees), take CSSE 333, Databases.
- Nodes can contain multiple keys and pointers to other to subtrees

B-tree nodes

- Each node can represent a block of disk storage; pointers are disk addresses
- This way, when we look up a node (requiring a disk access), we can get a lot more information than if we used a binary tree
- In an n-node of a B-tree, there are n pointers to subtrees, and thus n-1 keys
- For all keys in T_i, K_i ≤ T_i < K_{i+1}
 K_i is the smallest key that appears in T_i

B-tree nodes (tree of order m)

- All nodes have at most m-1 keys
- All keys and associated data are stored in special *leaf* nodes (that thus need no child pointers)
- The other (parent) nodes are index nodes
- All index nodes except the root have between m/2 and m children
- root has between 2 and m children
- All leaves are at the same level
- The space-time tradeoff is because of duplicating some keys at multiple levels of the tree
- Especially useful for data that is too big to fit in memory. Why?
- Example on next slide

Search for an item

- Within each parent or leaf node, the keys are sorted, so we can use binary search (log m), which is a constant with respect to n, the number of items in the table
- Thus the search time is proportional to the height of the tree
- Max height is approximately $log_{\lceil m/2 \rceil}$ n
- Exercise for you: Read and understand the straightforward analysis on pages 273-274
- Insert and delete are also proportional to height of the tree

Preview: Dynamic programming

- Used for problems with recursive solutions and overlapping subproblems
- Typically, we save (memoize) solutions to the subproblems, to avoid recomputing them.

Dynamic Programming Example

- Binomial Coefficients:
- C(n, k) is the coefficient of x^k in the expansion of $(1+x)^n$
- C(n,0) = C(n, n) = 1.
- If 0 < k < n, C(n, k) = C(n-1, k) + C(n-1, k-1)
- Can show by induction that the "usual" factorial formula for C(n, k) follows from this recursive definition.
 - A good practice problem for you
- If we don't cache values as we compute them, this can take a lot of time, because of duplicate (overlapping) computation.

Computing a binomial coefficient

Binomial coefficients are coefficients of the binomial formula: $(a + b)^n = C(n,0)a^nb^0 + \ldots + C(n,k)a^{n-k}b^k + \ldots + C(n,n)a^0b^n$

Recurrence: C(n,k) = C(n-1,k) + C(n-1,k-1) for n > k > 0C(n,0) = 1, C(n,n) = 1 for $n \ge 0$

Value of C(n,k) can be computed by filling in a table:

Computing C(n, k):

//Computes C(n, k) by the dynamic programming algorithm

```
ALGORITHM Binomial(n, k)
```

//Input: A pair of nonnegative integers $n \ge k \ge 0$ //Output: The value of C(n, k)for $i \leftarrow 0$ to n do for $j \leftarrow 0$ to $\min(i, k)$ do if j = 0 or j = i $C[i, j] \leftarrow 1$ else $C[i, j] \leftarrow C[i - 1, j - 1] + C[i - 1, j]$

return C[n, k]Time efficiency: $\Theta(nk)$

Space efficiency: $\Theta(nk)$

If we are computing C(n, k) for many different n and k values, we could cache the table between calls.

Transitive closure of a directed graph

- We ask this question for a given directed graph G: for each of vertices, (A,B), is there a path from A to B in G?
- Start with the boolean adjacency matrix A for the n-node graph G. A[i][j] is 1 if and only if G has a directed edge from node i to node j.
- The **transitive closure** of G is the boolean matrix T such that T[i][j] is 1 iff there is a nontrivial directed path from node i to node i in G.
- If we use boolean adjacency matrices, what does M² represent? M³?
- In boolean matrix multiplication, + stands for **or**, and * stands for **and**

FIGURE 8.2 (a) Digraph. (b) Its adjacency matrix. (c) Its transitive closure.

Transitive closure via multiplication

- Again, using + for **or**, we get $T = M + M^2 + M^3 + ...$
- Can we limit it to a finite operation?
- We can stop at Mⁿ⁻¹.
 - How do we know this?
- Number of numeric multiplications for solving the whole problem?

Warshall's algorithm

- Similar to binomial coefficients algorithm
- Assumes that the vertices have been numbered
 1, 2, ..., n
- Define the boolean matrix R(k) as follows:
 - $R^{(k)}[i][j]$ is 1 iff there is a path in the directed graph $v_i=w_0\to w_1\to ...\to w_s=v_i$, where
 - s >=1, and
 - for all t = 1, ..., s-1, w_t is v_m for some m ≤ k
 i.e, none of the intermediate vertices are numbered higher
 than k
- Note that the transitive closure T is R⁽ⁿ⁾

R^(k) example

 R^(k)[i][j] is 1 iff there is a path in the directed graph

$$v_i = w_0 \rightarrow w_1 \rightarrow ... \rightarrow w_s = v_i$$
, where

- s >1, and
- for all t = 2, ..., s-1, w_t is v_m for some m ≤ k
- Example: assuming that the node numbering is in alphabetical order, calculate $R^{(0)}$, $R^{(1)}$, and $R^{(2)}$

$$A = \begin{array}{c} a & b & c & d \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ d & 1 & 0 & 1 & 0 \end{array}$$

Quickly Calculating R(k)

- Back to the matrix multiplication approach:
 - How much time did it take to compute $A^k[i][j]$, once we have A^{k-1} ?
- Can we do better when calculating R^(k)[i][j] from R^(k-1)?
- How can R^(k)[i][j] be 1?
 - either $R^{(k-1)}[i][j]$ is 1, or
 - there is a path from i to k that uses no vertices higher than k-1, and a similar path from k to j.
- Thus $R^{(k)}[i][j]$ is $R^{(k-1)}[i][j]$ or ($R^{(k-1)}[i][k]$ and $R^{(k-1)}[k][j]$)
- Note that this can be calculated in constant time
- Time for calculating $R^{(k)}$ from $R^{(k-1)}$?
- Total time for Warshall's algorithm?

Code and example on next slides

ALGORITHM Warshall(A[1..n, 1..n])

//Implements Warshall's algorithm for computing the transitive closure //Input: The adjacency matrix A of a digraph with n vertices

//Output: The transitive closure of the digraph

$$R^{(0)} \leftarrow A$$

for
$$k \leftarrow 1$$
 to n do

for
$$i \leftarrow 1$$
 to n do

for
$$j \leftarrow 1$$
 to n do

$$R^{(k)}[i, j] \leftarrow R^{(k-1)}[i, j] \text{ or } (R^{(k-1)}[i, k] \text{ and } R^{(k-1)}[k, j])$$

return $R^{(n)}$

FIGURE 8.3 Rule for changing zeros in Warshall's algorithm

