Decrease by a constant factor Decrease by a variable amount

# A FEW LEFTOVER DECREASE-AND-CONQUER ALGORITHMS

# Decrease by a Constant Factor

- Examples that we have already seen:
  - Binary Search
  - Exponentiation (ordinary and modular) by repeated squaring
  - Multiplication à la Russe (The Dasgupta book that I often used for the first part of the course calls it "European" instead of "Russian")
    - Example
      11 13
      5 26
      2 52
      1 104
      143

Then strike out any rows whose first number is even, and add up the remaining numbers in the second column.

#### Fake Coin Problem

- We have n coins
- All but one have the same weight
- One is lighter
- We have a balance scale with two pans.
- All it will tell us is whether the two sides have equal weight, or which side is heavier
- What is the minimum number of weighings that will guarantee that we find the fake coin?
- Decrease by factor of two?



# Decrease by a variable amount

- Search in a Binary Search Tree
- Interpolation Search
  - See Levitin, pp190-191
  - Also Weiss, Section 5.6.3



# Median finding

- Find the k<sup>th</sup> element of an (unordered) list of n elements
- Start with quicksort's partition method
- Informal analysis



#### One Pile Nim

- There is a pile of n chips. Two players take turns by removing from the pile at least 1 and at most m chips. (The number of chips taken can vary from move to move.)
- The winner is the player that takes the last chip.
- Who wins the game the player moving first or second, if both players make the best moves possible?
- It's a good idea to analyze this and similar games "backwards", i.e., starting with n = 0, 1, 2, ...



# Graph of One-Pile Nim with m = 4



- Vertex numbers indicate n, the number of chips in the pile. The losing position for the player to move are circled. Only winning moves from a winning position are shown.
- **Generalization:** The player moving first wins iff n is not a multiple of 5 (more generally, m+1);
  - The winning move is to take n mod 5 (n mod (m+1)) chips on every move.

#### Multi-Pile Nim

- There are multiple piles of chips. Two players take turns by removing from any single pile at least 1 and at most all of that pile's chips. (The number of chips taken can vary from move to move)
- The winner is the player that takes the last chip.
- What is the winning strategy for 2-pile Nim?
- For the general case, consider the "Nim sum",
   x ⊕ y, which is the integer obtained by bitwise
   XOR of corresponding bits of two non-negative integers x and y. What is 6 ⊕ 3?

#### Multi-Pile Nim Strategy

- Solution by C.L. Bouton:
- The first player has a winning strategy iff the nim sum of the "pile counts" is not zero.
- Let's prove it. Note that ⊕ is commutative and associative.
- Also note that for any non-negative integer k, k⊕k is zero.



#### Multi-Pile Nim Proof

- Notation:
  - Let  $x_1, ..., x_n$  be the sizes of the piles before a move, and  $y_1, ..., y_n$  be the sizes of the piles after that move.
  - Let s =  $x_1$  ⊕ ... ⊕  $x_n$ , and t =  $y_1$  ⊕ ... ⊕  $y_n$ .
- Observe: If the chips were removed from pile k, then  $x_i = y_i$  for all  $i \neq k$ , and  $x_k > y_k$ .
- Lemma 1:  $t = s \oplus x_k \oplus y_k$ .
- **Lemma 2:** If s = 0, then  $t \ne 0$ .
- Lemma 3: If  $s \ne 0$ , it is possible to make a move such that t=0. [after proof, do an example].
- Proof of the strategy is then a simple induction. (do this one with a partner. Great HW or exam question.)

# Josephus problem - background

- Flavius Josephus was a Jewish general and historian who lived and wrote in the 1<sup>st</sup> century AD
- Much of what we know about 1<sup>st</sup> century life in Israel (and the beginnings of Christianity) before and after the Roman destruction of the Jewish temple in 70 AD comes from his writings
- The "Josephus problem" is based on an odd suicide pact that he describes
  - He and his men stood in a circle and counted off
  - Every other person (or every third person, accounts vary) was killed
  - The last person was supposed to kill himself
  - He must have been the next-to-last person!
  - When it got down to two people, he persuaded the other person that they should surrender instead
- <a href="http://en.wikipedia.org/wiki/Josephus">http://en.wikipedia.org/wiki/Josephus</a>