Announcements:

1. HW8 due tomorrow; HW9 due Monday (with a grace day until Tuesday because of the break; HW 10 due next Thursday.
2. I added two problems to HW 9 this morning. There are now 7 problems.
3. In my office today: Hours 6-8, possibly first half of 10.

Main ideas from today:

1. Some "left-over" divide and conquer algorithms:

Fake Coin problem: How many weighings are necessary to find the lighter coin (assume there is exactly one)?

Median-finding (use a quicksort-like partition)
2. Explain the winning strategy for one-pile Nim where a player can take $1 . . \mathrm{m}$ chips on one turn, ant the winner is the one to take the last chip.
3. What is the winning strategy for 2-pile Nim? Each player can take any nonzero number of chips from either of the piles.
4. A strategy for n-pile Nim.
5. Define $x \oplus y$, the "Nim sum" of x and y. (note that \oplus is associative and commutative)
6. What is $11 \oplus 14$?
7. Notation for $\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}, \mathrm{s}$, and t :
8. Lemma 1 and its proof
9. Lemma 2 and its proof
10. Lemma 3 and its proof
11. Briefly describe the Josephus problem

