MA/CSSE 473 Day 19 Announcements and Summary

Announcements:

- 1. HW8 due tomorrow; HW9 due Monday (with a grace day until Tuesday because of the break; HW 10 due next Thursday.
- 2. I added two problems to HW 9 this morning. There are now 7 problems.
- 3. In my office today: Hours 6-8, possibly first half of 10.

Main	ideas	from	today	/ :
------	-------	------	-------	------------

1.	Some "left-over" divide and conquer algorithms:
	Fake Coin problem: How many weighings are necessary to find the lighter coin (assume there is exactly one)?
	Median-finding (use a quicksort-like partition)
2.	Explain the winning strategy for one-pile Nim where a player can take1m chips on one turn, ant the winner is the one to take the last chip.
3.	What is the winning strategy for 2-pile Nim? Each player can take any nonzero number of chips from either of the piles.

4.	A strategy for n-pile Nim.
5.	Define $x \oplus y$, the "Nim sum" of x and y . (note that \oplus is associative and commutative)
6.	What is 11 ⊕14?
7.	Notation for x_i , y_i , s , and t :
8.	Lemma 1 and its proof
9.	Lemma 2 and its proof
10.	Lemma 3 and its proof
11.	Briefly describe the Josephus problem