MA/CSSE 473

Day 12 ® o

“~>
s T ©

Insertions Sort
quick review

DFS, BFS

Topological Sort

MA/CSSE 473 Day 12

e Changes to HW 6 (details: schedule page Day 15)
— Due date postponed
— Problems 9-11 added back in

e Questions?

e Depth-first Search

e Breadth-first Search

e Topological Sort

e (Introduce permutation and subset generation)

Some "decrease by one" algorithms

e Insertion sort

e Selection Sort

e Depth-first search of a graph

e Breadth-first search of a graph

Review: Analysis of Insertion Sort

e Time efficiency
C,orstln) = n(n-1)/2 € O(n?)
Covg(n) = n*/4 € O(n?)
Cpestln) =n-1 € O(n)
(also fast on almost-sorted arrays)
» Space efficiency: in-place
(constant extra storage)
e Stable: yes
e Binary insertion sort (HW 6)
— use Binary search, then move elements --_.: :

to make room for inserted element v

Graph Traversal

Many problems require processing all graph
vertices (and edges) in systematic fashion

Most common Graph traversal algorithms:

— Depth-first search (DFS)

— Breadth-first search (BFS)

Depth-First Search (DFS)

e Visits a graph’s vertices by always moving away from
last

visited vertex to unvisited one, backtracks if no
adjacent

unvisited vertex is available
e Uses a stack

— avertex is pushed onto the stack when it’s reached for the first time

— avertex is popped off the stack when it becomes a dead end, i.e.,
when there are no adjacent unvisited vertices

e “Redraws” graph in tree-like fashion (with tree
edges and back edges for undirected graph)
—A back edge is an edge of the graph that goes from tbe_ :

current vertex to a previously visited vertex
(other than the current vertex's parent).

Notes on DFS

e DFS can be implemented with graphs represented as:
— adjacency matrix: ©(V?)
— adjacency list: O(|V/[+|E])

e Yields two distinct ordering of vertices:

— order in which vertices are first encountered (pushed onto
stack)

— order in which vertices become dead-ends (popped off
stack)

e Applications:
— checking connectivity, finding connected components
— checking acyclicity
finding articulation points
searching state-space of problems for solution (Al) .

Pseudocode for DFS

ALGORITHM DFS(G)

/Mmplements a depth-first search traversal of a given graph
[Mnput: Graph G = (V, E)
//Output: Graph G with its vertices marked with consecutive integers
//in the order they’ve been first encountered by the DFS traversal
mark each vertex in V with 0 as a mark of being “unvisited”
count « ()
for each vertex v in V do

if v is marked with 0

dfs(v)

dfs(v)

/Ivisits recursively all the unvisited vertices connected to vertex v by a path

//fand numbers them in the order they are encountered

/Ivia global variable count

count « count + 1; mark v with count

for cach vertex w in V adjacent to v do 2

if w is marked with 0 -
dfs(w) v

Example: DFS traversal of undirected graph

DFS traversal stack: DFS tree:

Breadth-first search (BFS)

e Visits graph vertices in increasing order of
length of path from initial vertex.

Vertices closer to the start are visited early

Instead of a stack, BFS uses a queue

Level-order traversal of a rooted tree is a
special case of BFS

“Redraws” graph in tree-like fashion (with tree
edges and cross edges for undirected graph)

Pseudocode for BFS

ALGORITHM BFS(G)

/[Implements a breadth-first search traversal of a given graph
/Mnput: Graph G = (V, E}

//Output: Graph G with its vertices marked with consecutive integers
/fin the order they have been visited by the BFS traversal

mark each vertex in V with 0 as a mark of being “unvisited”

count <0))
foreachvertex vin v do NOte that this code is

it v 1s marked with 0

bfsa) like DFS, with the stack
bfs(v) replaced by a queue

/tvisits all the unvisited vertices connected to vertex v by a path
/fand assigns them the numbers in the order they are visited
/fvia global variable couni
count < count + 1; mark v with counr and initialize a queue with v
while the queue is not empty do
for cach vertex w in V adjacent to the front vertex do
if w is marked with O
count < count + 1; mark w with count
add w to the queue
remove the front vertex from the queue

]
) o
L N

Example of BFS traversal of undirected graph

BFS traversal queue: BFS tree:

Notes on BFS

e BFS has same efficiency as DFS and can be
implemented with graphs represented as:
— adjacency matrices: ©(V?)
— adjacency lists: O(|V/[+|E|)

e Yields a single ordering of vertices (order
added/deleted from the queue is the same)

e Applications: same as DFS, but can also find
shortest paths (smallest number of edges) from a
vertex to all other vertices

DFS and BFS

TABLE 3.1 Main facts about depth-first search (DFS)
and breadth-first search (BFS)

DFS BFS
Diata structure a stack a queue
Number of vertex orderings two orderings ong ordering
Edge types {undirected graphs) tree and back edges tree and cross edges
Applications connectivity, connectivity,
acyclicity, acyclicity,
articulation points minimum-edge paths
Efficiency for adjacency matrix —— &(|V?]) SIS
Efficiency for adjaceney lists SB{VI+ |E]) S{VI+ E]
® o
=" ="

Directed graphs

e |[n an undirected graph, each edge is a "two-
way street".

— The adjacency matrix is symmetric

e |In an directed graph (digraph), each edge goes
only one way.
— (a,b) and (b,a) are separate edges.

— One such edge can be in the graph without the
other being there.

Dags and Topological Sorting

dag: a directed acyclic graph, i.e. a directed graph with no (directed) cycles

not a

a dag dag

Dags arise in modeling many problems that involve prerequisite
constraints (construction projects, document version control, compilers)

The vertices of a dag can be linearly ordered so that every edge's
starting vertex is listed before its ending vertex (topological sort).

A graph must be a dag in order for a topological sort of its PCS

vertices to be possible. 9

Topological Sort Example

Order the following items in a food chain

/

DFS-based Algorithm

DFS-based algorithm for topological sorting

— Perform DFS traversal, noting the order vertices are
popped off the traversal stack

— Reversing order solves topological sorting problem
— Back edges encountered?—> NOT a dag!

Example:

Efficiency:

Source Removal Algorithm

Repeatedly identify and remove a source (a vertex with no
incoming edges) and all the edges incident to it until either
no vertex is left (problem is solved) or there is no source
among remaining vertices (not a dag)

Example:

[]
Efficiency: same as efficiency of the DFS-based algorithm = =l

Application: Spreadsheet program

e What is an allowable order of computation of
the cells' values?

A B C
1 =C4-7 4 =C4+6
2 =A3+A1-C4 =1+B1 =B1-A4
3 7 =A3"C2-B2 =B3+A3
4 =A1"B1"A2 =C2-Ad 9

10

Cycles cause a problem!

A B C
1 =C¢=F+—__ 4 =C4+6
2 |=A3+A1-C4 |=1+B1 1-Ad
3 7 = 2-B2 =B3+A3
4

=AFBTA2 =C2-Ad 9

(We may not get to this today)

Permutations
Subsets

COMBINATORIAL OBIJECT
GENERATION

11

Combinatorial Object Generation

e Generation of permutations, combinations,
subsets.

e This is a big topic in CS
e We will just scratch the surface of this subject.

— Permutations of a list of elements (no duplicates)
— Subsets of a set

Permutations

e We generate all permutations of the numbers
1..n.

— Permutations of any other collection of n distinct
objects can be obtained from these by a simple

mapping.
e How would a "decrease by 1" approach work?
— Find all permutations of 1.. n-1
— Insert n into each position of each such permutation

— We'd like to do it in a way that minimizes the change
from one permutation to the next.

— It turns out we can do it so that we always get the next
permutation by swapping two adjacent elements,.-_ = o

12

First approach we might think of

e for each permutation of 1..n-1

— fori=0..n-1
e insert n in position i

e That is, we do the insertion of n into each
smaller permutation from left to right each
time

e However, to get "minimal change", we
alternate:
— Insert n L-to-R in one permutation of 1..n-1
— Insert n R-to-L in the next permutation of 1..n-1

- Etc. e

Example

e Bottom-up generation of permutations of 123

start 1

insert 2 into 1 right to left 12 21

insert 3into 12 right 1o lelt 123 132 312
insert 3into 21 left to right 321 231 213

e Example: Do the first few permutations for n=4

13

