MA/CSSE 473
Day 05 ® o

L1
e ' O
<

Factors and Primes
Recursive division
algorithm

MA/CSSE 473 Day 05
e HW 2 due tonight, 3 is due Monday

e Student Questions
e Asymptotic Analysis example: summation
e Review topics | don’t plan to cover in class

e Continue Algorithm Overview/Review
— Integer Primality Testing and Factoring
— Modular Arithmetic intro
— Euclid’s Algorithm

MA/CSSE 473 Day 05
HW 2 due tonight, 3 is due Monday

Student Questions

Asymptotic Analysis example: summation

Continue Algorithm Overview/Review
— Integer Primality Testing and Factoring
— Modular Arithmetic intro

e Address the issue in my email from Tuesday evening:
e Some possible misunderstanding about my disclaimer
e Was not intended to be funny, as the limerick was.
e It was not my opinion, it was just a bunch of facts copied from a NIH
web page (four years ago | think)
e http://www.niaaa.nih.gov/alcohol-health/special-populations-co- occurrln_q-
disorders/college-drinking

| don’t really like the term “date rape”.

— Rapeis rape, and it is a horrendous crime.
It is all about the perpetrator, not the victim.

— In my opinion, the perp. should have a part of his anatomy cut off, or something

worse.

The impact on the victim is greater than anyone who has not experienced it can
imagine.
Nothing that the victim does can legitimize any kind of unwanted sexual advance.
Anyone who implies that it is the victim’s fault is just plain wrong!

— But so many people believe this, that | can see how someone might interpretthe NIH statement
as a “blame the victim” statement. This is a very serious and emotional issue.

— So | again apologize for including that in the disclaimer.
Anyone who won’t take a single “no” at face value and respect it is evil, IMHO.
Unfortunately such evil people exists, and unfortunately the people they choose as
victims are often people whom they know, people who would never suspect them of
being capable of something so horrendous.

IMHO, the NIH web page was simply stating that alcohol is often involved in rape and
other crimes. It can embolden the perp. And impair the victim’s extrication ability.

If anyone here is victim of rape or anyother kind of violence, my heart goes out to
you.

As you struggle to find healing, don’t listen to anyone (including yourself) who tells
you that you are at fault or that you in any way less of a person because sornethlng.

happened to you that was totally beyond your control. l .

Asymptotic Analysis Example

e Find a simple big-Theta expression (as a
function of n) for the following sum
—when0O<c<1
—whenc=1
—whenc>1

ef(n)=1+c+c2+c3+..+c"

Quick look at review topics in textbook

REVIEW THREAD

Textbook Topics | Won't Cover in Class

e Chapter 1 topics that | will not discuss in detail
unless you have questions. They should be
review For some of them, there will be review
problems in the homework
— Sieve of Eratosthenes (all primes less than n)

— Algorithm Specification, Design, Proof, Coding
— Problem types : sorting, searching, string
processing, graph problems, combinatorial

problems, geometric problems, numerical
problems

— Data Structures: ArraylLists, LinkedLists, trees, o

search trees, sets, dictionaries, v

Textbook Topics | Won't Cover*

e Chapter 2
— Empirical analysis of algorithms should be review

— | believe that we have covered everything else in
the chapter except amortized algorithms and
recurrence relations

— We will discuss amortized algorithms

— Recurrence relations are covered in CSSE 230 and
MA 375. We'll review particular types as we
encounter them.

*Unless you ask me to v

Textbook Topics | Won't Cover*

e Chapter 3 - Review
— Bubble sort, selection sort, and their analysis
— Sequential search and simple string matching

*Unless you ask me to v

Textbook Topics | Won't Cover*

e Chapter 4 - Review
— Mergesort, quicksort, and their analysis
— Binary search
— Binary Tree Traversal Orders (pre, post, in, level)

*Unless you ask me to v

Textbook Topics | Won't Cover*

e Chapter 5 - Review
— Insertion Sort and its analysis
— Search, insertion, delete in Binary Tree
— AVL tree insertion and rebalance

*Unless you ask me to

Integer Division

Modular arithmetic

Euclid's Algorithm

Heading toward Primality Testing

ARITHMETIC THREAD

FACTORING and PRIMALITY

e Two important problems

— FACTORING: Given a number N, express it as a product of its
prime factors

— PRIMALITY: Given a number N, determine whether it is
prime
e Where we will go with this eventually

— Factoring is hard

e The best algorithms known so far require time that is exponential in
the number of bits of N

— Primality testing is comparitively easy
— Asstrange disparity for these closely-related problems
— Exploited by cryptographic algorithms
e More on these problems later
— First, more math and computational background... =

Recap: Arithmetic Run-times

For operations on two k-bit numbers:
Addition: ©(k)
Multiplication:

— Standard algorithm: 6(k?)

— "Gauss-enhanced": 8(k1?), but with a lot of
overhead.

Division (We won't ponder it in detail, but see
next slide): ©(k?)

Algorithm for Integer Division

def divide(x, vy):
" Input: Two non—-negative integers x and y, where y>=1.
Output: The quotient and remainder when x is divided by y."""
if x = 0:
return 0, 0

g, r = divide(x // 2, y) # max recursive calls:

g, T =2 * q, 2 *r # number of bits in x

if x % 2 = 1:
r=r 1

if v >= y: # note that all of the multiplications
g, r=qg+ 1, r -y # and divisions are by 2:

return , r # simple bit shifts

Let's work through divide(19, 4).

Analysis? -

Modular arithmetic definitions

e x modulo N is the remainder when x is divided by
N. lLe.,

—Ifx=qgN +r, where 0 <r< N (q and r are unique!),
— then x modulo N is equal tor.

e x and y are congruent modulo N, which is written
as x=y (mod N), if and only if N divides (x-y).
— i.e., there is an integer k such that x-y = kN.
— In a context like this, a divides b means "divides with
no remainder", i.e. "a is a factor of b."

e Example: 253 = 13 (mod 60)

Modular arithmetic properties

Substitution rule

— Ifx=x"(mod N)andy=y' (mod N),
thenx+y=x"'+y' (mod N), and xy =x'y' (mod N)

Associativity

- X+(y+z)=(x+y)+z(modN)

Commutativity

— xy=yx (mod N)
Distributivity

— X(y+z) =xy +yz (mod N)

Modular Addition and Multiplication

e To add two integers x and y modulo N (where k =
|—Iog N | (the number of bits in N), begin with regular
addition.

—xandyareintherange_ ,sox+yisinrange
— If the sum is greater than N-1, subtract N.
— Runtimeis©()

e To multiply x and y modulo N, begin with regular
multiplication, which is quadratic in k.

— The result is in range and has at most _____ bits.
— Compute the remainder when dividing by N, quadratice e

time. So entire operationis ©() v

Modular Addition and Multiplication

e To add two integers x and y modulo N (where k =[log N,
begin with regular addition.

— xandy arein the range 0 to N-1,
sox+yisinrange 0to 2N-1

— If the sum is greater than N-1, subtract N.
— Runtimeis © (k)
e To multiply x and y, begin with regular multiplication,
which is quadraticin n.
— The result is in range 0 to (N-1)?> and has at most 2k bits.

— Then compute the remainder when dividing by N, quadratic
time in k. So entire operation is ©(k?) s

Modular Exponentiation

* In some cryptosystems, we need to compute
xY modulo N, where all three numbers are several
hundred bits long. Can it be done quickly?

e Can we simply take x¥ and then figure out the
remainder modulo N?
e Suppose x and y are only 20 bits long.

— XY is at least (219)2'9), which is about 10 million bits
long.
— Imagine how big it will be if y is a 500-bit number!

e To save space, we could repeatedly multiply by x,
taking the remainder modulo N each time.
e If y is 500 bits, then there would be 2°% bit multiplications. « e
e This algorithm is exponential in the length of y. "= e
e Ouch!

10

Modular Exponentiation Algorithm

def modexp i, v, N):
if y==0:
return 1
z = modexpix, v/Z2, U
1f y%2 ==
return (z*¥z) % N
return (¥*¥z*z) % N

Let n be the maximum number of bitsin x, y, or N

e The algorithm requires at most ____ recursive calls
e Eachcallis 6()
* So the overall algorithm is ©() oy =

Modular Exponentiation Algorithm

def modexp(x, v, N):
if y==0:
return 1
z = modexpix, v/2, N)
1f y%2 ==
return (z*z) % N
return (¥x*z*z) % N

Let n be the maximum number of bitsin x, y, or N

The algorithm requires at most n recursive calls
Each call is ©(n?)
So the overall algorithm is ©(n3) - N

11

