MA/CSSE 473
Day 03 ®

>
Asymptotics .. ’.

A Closer Look at
Arithmetic

With another student,
try to write a precise,
formal definition of

“t(n) is in O(g(n))”

Day 3

e Student questions

— Course policies?

— HW assignments?

— Anything else?
e The two “early course” threads
e Review of asymptotic notation

e Addition and multiplication algorithms

Two threads in lectures

e Each day at the beginning of the course
o A little review (today it's a lot)

e Continue with discussion of efficiency of
Fibonacci and arithmetic (if there is time).

Review thread for today:

Asymptotics (O, ©, Q)

Mostly a recap of 230 lecture on same topic.
I

Rapid-fire Review:
Definitions of O, 6, Q

* | will re-use some of my slides from CSSE 230
— Some of the pictures are from the Weiss book.

e And some of Levitin's pictures

e Avery similar presentation appears in Levitin,
section 2.2

e Since this is review, we will move much quicker
than in 230

Asymptotic Analysis

e We only really care what happens
when N (the size of a problem) gets
large

e |s the function linear? quadratic?
exponential? etc.

Asymptotic order of growth

Informal definitions

A way of comparing functions that ignores constant
factors and small input sizes

® O(g(n)): class of functions t(n) that grow no faster
than g(n)

* O(g(n)): class of functions t(n) that grow at same
rate as g(n)

* (g(n)): class of functions t(n) that grow at least

as fast as g(n) <=

Formal Definition

e We will write a precise formal definition of
"t(n) €0(g(n)"

— This is one thing that students in this course should
soon be able to do from memory...

— ... and also understand it, of course!

Big-oh (a.k.a. Big O)

F

| og{n}
]
| t(n)
i
1
1
|
1
1
1
1
1
l
1

doesn't |

matter f
:
1
1
! -
n i L

0

Figure 2.1 Big-oh notation: #(n) € O(g(n) v

Prove a Big O Property

e For any function g(n), O(g(n)) is a set of functions

e We say that t(n) €0(g(n)) iff there exist two
positive constants c and n, such that
foralln=n, t(n)<cg(n)

e Rewrite using V and 1 notation

* If f(n)eO(g(n)) and t(n)eO(g(n)),
then f(n)+t(n)e0(g(n))
* Let's prove it

Big-omega

t(n)
cg(n)

doesn't
matter

n,

® @
- o e

Fig. 2.2 Big-omega notation: t(n} € Q(gin)) W

Big-theta

c,g({n)
A
t{n)
59(n)
doesn't
matter
> 11

my

Figure 2.3 Big-theta notation: ¢(n) € ©{g(n)) v

Big O examples

¢ All that we must do to prove that t(n) is O(g(n)) is produce a
pair of numbers ¢ and n, that work for that case.

e t(n)=n, g(n)=n2
e t(n)=n, g(n) =3n.
e t(n)=n+12,g(n)=n.
We can choose c=3 and n, =6, or c=4 and n, = 4.
e t(n)=n+sin(n)
e t(n)=n2+sqgrt(n)
In CSSE 230, we do these in great detail in class.

® 8
In 473, | say, "work on them if you need e
answers on the next slide.

Answers to examples

e For this discussion, assume that all functions have non-
negative values, and that we only care about n>0.
For any function g(n), O(g(n)) is a set of functions We say that
a function f(n) is (in) O(g(n)) if there exist two positive
constants ¢ and n, such that for all n>n,, f(n)<cg(n).

¢ So all we must do to prove that f(n) is O(g(n)) is produce two
such constants.

e f(n)=n+12, g(n)="727>.
— g(n)=n.Then c=3 and n, =6, or c =4 and n, = 4, etc.
— f(n) =n+sin(n): g(n)=n,c=2,n,=1
— f(n) =n?2 +sqrt(n): g(n) =n2,c=2,n,=1

Limits and asymptotics

Consider the limit I I m t(n)

N—o0 g(n)

What does it say about asymptotics if this limit is zero, nonzero,
infinite?

We could say that knowing the limit is a sufficient but not
necessary condition for recognizing big-oh relationships.

It will be sufficient for most examples in this course.

Challenge: Use the formal definition of limit and the formal e

definition of big-oh to prove these properties. = <=
U

Apply this limit property to the
following pairs of functions

N and N2

N2 + 3N + 2 and N2

N + sin(N) and N

log N and N

N log N and N?

N2 and N"

aVNand bN (a<b)

log,N and log,N (a<b)
N!and NN

Sl = ORISR

Big-Oh Style

e Give tightest bound you can

— Saying that 3N+2 € O(N3) is true, but not as useful as saying
it’s O(N) [What about ©(N3) ?]

e Simplify:
— You could say:
— 3n+2is O(5n-3log(n) + 17)
— and it would be technically correct...
— But 3n+2 €0(n) is better

e But... if | ask “true or false: 3n+2 € O(n?)”,
what’s the answer? .

— True! . -'.'.-F'

BACK TO AND ARITHMETIC THREAD
FROM LAST TIME:

The catch!

e Are addition and multiplication constant-time
operations?

e We take a closer look at the "basic operations"

e Addition first:

e At most, how many digits in the sum of three
decimal one-digit numbers?

e |s the same result true in binary and every other
base?

e Add two k-bit positive integers (53+35):
Carry: 1 1 1 1

1 1 0 1 0 1 (35
1 0 0 0 1 1 (s3) ° o
1 0 1 1 0 0 0 (s8) " e

e So adding two k-bit integers is O(). v

Multiplication

e Example: multiply 13 by 11
0 1

1 1

0O 1 (1101times1)

1 (1201 times 1, shifted once)
(1201 times 1, shifted twice)
(1201 times 1, shifted thrice)

1 1 1 (binary143)

X

OORrOor

RlRORRRPR

elloNeN

0
1 1
1 0 O
e There are K rows of 2Kk bits to add, so
we do an O(K) operation K times, thus

the whole multiplication is O() ?
e Can we do better? >

Multiplication by an Ancient Method

e This approach was known to Al Khwarizimi
e According to Dasgupta, et al, still used today in
some European countries

e Repeat until 15t number is 1, keeping all results:
— Divide 1t number by 2 (rounding down)
— double 2" number

e Example
Lo 13 Then strike out any rows whose
= 26 first number is even, and add up
1 104 the remaining numbers in the

143 second column.

e Correct? Analysis v

10

Recursive code for this algorithm

def multiply(m, n):
"multiply two integers m and n, where n >= 0"
if n ==
return 0
z = multiply (m, n // 2)
ifn% 2==20:
return 2 * z
return m + 2 * z

print (multiply(12, 17))

For retference: The Master

Theorem
e The Master Theorem for Divide and Conquer
recurrence relations:

: For details, see Levitin
(])
Consider the recurrence E—

T(n) = aT(n/b) +f(n), T(1)=C, Weiss section 7.5.3.
where f(n) = (n*) and k>0,

Grimaldi's Theorem

e The solution is 10.1 is a special case of

_ e(nk) if 3 <bk the Master Theorem.

— B(nklogn) if a=Dbk

— B(nlo8x?) if a>bk
We will use this theorem often. You should - _: :
review its proof soon (Weiss's proof is a bit Wl
easier than Levitin's). '

11

New Multiplication Approach

e Divide and Conquer
e To multiply two k-bit integers x and y:

Split each into its left and right halves so that
x=2"2x +x;, and y=2"%y +y,

The straightforward calculation of xy would be
(242x + xg) (2¥%y, + yg) =
2%y, + 22(x, Yr + XRYL) + XrYR
— Code on next slide
— We can do the four multiplications of k/2-bit integers using

four recursive calls, and the rest of the work (a constant
number of bit shifts and additions) in time O(k) * :

— Thus T(k) = . Solution? v

Code for divide-and-conquer
multiplication
def multiply(x, y, n):

rrrmultiply two integers x and y, where n >= 0
is a power of 2, and as large as the maximum number of bits in x or y""

if n ==
return x * y

n over two = n//2
two_to the n over two = 1 << n _over two # a single right bit-shift
xL, XR = X // two_to_the n over_ two, x % two_to _the n over_ two

yL, YR =y // two_to the n over two, y % two_to the n over_ two
note that these two operations could be done by bit shifts and masking.

pl = multiply (xL, yL, n_over_ two)
p2 = multiply (xL, yR, n_over two)
p3 = multiply (%R, yL, n_over two)
pd4 = multiply (xR, yR, n over two)

return (pl << n) + ((p2 + p3) << n over two) + pd

12

Can we do better than O(k?)?

e |s there an algorithm for multiplying two k-bit
numbers in time that is less than O(k?)?

e Basis: A discovery of Carl Gauss (1777-1855)

— Multiplying complex numbers:

— (a + bi)(c+di) = ac — bd + (bc + ad)i

— Needs four real-number multiplications and three
additions

— But bc + ad = (a+b)(c+d) — ac —bd

— And we have already computed ac and bd when we
computed the real part of the product!

— Thus we can do the original product with 3
multiplications and 5 additions

— Additions are so much faster than multiplications that
we can essentially ignore them. e

— Alittle savings, but not a big deal until applied _.- < o
recursively! Wt

Code for Gauss-based Algorithm

Hef multiply(x, vy, n):
mrrmultiply two integers x and y, where n >= 0
is a power of 2, and as large as the maximum number of bits in x or y"""

if n == 1:
return x * y

n_over two = n // 2 # simply shifts the bits one to the right.
two_to the n over two = 1 << n_over_two
XL, XR = x // two_to_the n over two, x % two_to the n over two

yL, yR =y // two_to_the n over two, y % two_to_the n over_ two
note that these two operations could be done by bit shifts and masking.

multiply (xL, yL, n _over two)
multiply (xL+xR, yL+yR, n over two)
multiply (xR, YR, n over two)

rl
pZ
p3

return (pl << n) + ((p2 - p3 - pl) << n_over_two) + p3

13

Is this really a lot faster?

e Standard multiplication: 6(k?)

¢ Divide and conquer with Gauss trick: 6(k!->°)

— Write and solve the recurrence

e But there is a lot of additional overhead with

Gauss, so standard multiplication g,

is faster for small values of n.
plot{ {(n"2, n"1.5%}, n=0..100},
¢ In reality we would not let the
recursion go down to the
single bit level, but only down
to the number of bits that our
machine can multiply in
hardware without overflow.

B000
BN
40007
2000

D.

20 40 nEh 80 100

14

