Some major arithmetic ideas and results from MA/CSSE 473\}

1. Adding two k-bit integers: $\Theta(k)$
2. Multiplication of two k-bit integers:
a. Standard approach: $\Theta\left(\mathrm{k}^{2}\right)$
b. Simple divide and conquer ($a+b i$) $(c+d i) \quad \Theta\left(k^{2}\right)$
c. Gauss-based divide-and conquer $(a+b)(c+d)=(a c+b d)+[(a+b)(c+d)-a c-b d] \mid \quad \Theta\left(k^{\log [2] 3}\right)$
3. Division of two k-bit integers: $\Theta\left(k^{2}\right)$
4. Modular Arithmetic basics: $a \equiv b(\bmod N)$ if and only if N divides $(a-b)$. I.e. $\exists k((b-a)=k N$.
a. Substitution rule
i. If $x \equiv x^{\prime}(\bmod N)$ and $y \equiv y^{\prime}(\bmod N)$, then $x+y \equiv x^{\prime}+y^{\prime}(\bmod N)$, and $x y \equiv x^{\prime} y^{\prime}(\bmod N)$
b. Associativity
i. $x+(y+z) \equiv(x+y)+z(\bmod N)$
c. Commutativity
i. $\quad x y \equiv y x(\bmod N)$
d. Distributivity
i. $\quad x(y+z) \equiv x y+y z(\bmod N)$
e. Modular addition run time $\Theta(k)$
f. Modular multiplication run time $\Theta\left(k^{2}\right)$
g. Integer division algorithm (gives quotient and remainder) $\Theta\left(k^{2}\right)$
h. ModExp calculates $x^{y}(\bmod N) \Theta\left(k^{3}\right)$
i. Euclid algorithm: $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \% b)$
j. Extended Euclid finds gcd d and x, y such that $d=a x+b y$.
k. Modular inverse. X such that $a x \equiv 1(\bmod N)$. Exisist iff $\operatorname{gcd}(a, N)=1$.
i. Once we find x, y such that $1=a x+b N$, then $a^{-1} \equiv x(\bmod N)$
I. Modular division $a / b \equiv a b^{-1}(\bmod N)$
5. Fermat's little theorem: If p is prime and p does not divide $a, a^{p-1} \equiv 1(\bmod p)$
6. This test can show a number composite but cannot show it to be prime.
7. If a is relatively prime to N and if a fails the Fermat test (a^{p-1} is not congruent to $1 \bmod N$), then at least half of $1,2, \ldots, N-1$ fail the test.
8. A Carmichael number is a composite integer N for which each of $1,2, \ldots N-1$ passes the Fermat test.
9. Miller-Rabin test. Write $N-1$ as $2^{t} u$ and Examine powers of $a: u, u^{2}, u^{4}, \ldots u^{t}$ looking for a nontrivial square root of 1 . If we find one (or if the final power is not 1 , so a fails the Fermat test) , N is composite.
10. RSA encryption: Let p and q be primes, $\mathrm{N}=\mathrm{pq}$. Let we be any number with $\operatorname{gcd}(\mathrm{e}, \mathrm{N})=1$.
a. The public encryption key is the pair (N, e)
b. Encryption: $\mathrm{m}^{\prime}=\mathrm{m}^{\mathrm{e}}(\bmod \mathrm{N})$
c. Decryption key d is the inverse of e $(\bmod (p-1)(q-1))$.
d. Decryption: $\left(m^{\prime}\right)^{d} \equiv m(\bmod N)$. i.e. $\left(M^{e}\right)^{d} \equiv m(\bmod N)$.
e. Principle. It's hard to guess d if you don't know p and q. Factoring is hard.
