HW 12 textbook problems and hints
Problem 1. 8.4.3 [8.2.3] (5) (Warshall with no extra memory use)
Explain how to implement Warshall’s algorithm without using extra memory
for storing elements of the algorithm’s intermediate matrices.

Author's hints:	
[image:]

Problem 2. 8.4.4[8.2.4] (10) (More efficient Warshall inner loop)
[image:]
Author's hints:	
[image:]

Problem 3. OptimalBST problem (25 points plus extra credit)
 Not from the textbook. Description is in the assignment document
Problem 4. 8.3.3 (10) (Optimal BST from root table)
[image:]
Author's hint:
[image:]

Problem 5. 8.3.4 (5) (Sum for optimalBST in constant time)
[image:]
Author's hint
: [image:]
Problem 6. 8.3.6 (10) (optimalBST--successful search only--if all probabilities equal)
[image:]
Author's hint:
[image:]

Problem 7. 8.3.10a (5) (Matrix chain multiplication)
[image:]
 [image:]
Author's hint:
[image:]

Problem 8. 8. 4.7 [8.2.7] (10)	(Floyd algorithm example)
[image:]
Author's hint:
See an example of applying the algorithm to another instance of the problem in the section.

[bookmark: _GoBack]Problem 9. 8. 4.8 [8.2.8] (8)	(Floyd algorithm matrix overwrite)
Prove that the next matrix in sequence (8.14) of Floyd’s algorithm can be
written over its predecessor.

Instructor's notes:
Here is the sequence that the problem refers to (I think it is 8.8 in the second edition):
[image:]

Author's hint:
[image:]
image6.png
4. Devise a way to compute the sums Y/ _, p,, which are used in the dynamic
programming algorithm for constructing an optimal binary search tree, in
constant time (per sum).

image7.png
4. Use a space-for-time tradeoff.

image8.png
6. How would you construct an optimal binary search tree for a set of n
keys if all the keys are equally likely to be searched for? What will be
the average number of comparisons in a successful search in such a tree if
n=2%7

image9.png
6. The structure of the tree should simply minimize the average depth of its
nodes. Do not forget to indicate a way to distribute the keys among the
nodes of the tree.

image10.png
10. Matriz chain multiplication Consider the problem of minimizing the
total number of multiplications made in computing the product of n ma-
trices

A

Az~ An

whose dimensions are do by di, di by da. ... du1 by du, respectively. (As-
sume that all intermediate products of two matrices are computed by the

image11.png
brute-force (definition-based) algorithm.

a. Give an example of three matrices for which the number of multi-
plications in (A Az)- Ag and A, - (Az- Ag) differ at least by a factor 1000,

image12.png
10. a. It is easier to find a general formula for the number of multiplications
needed for computing (A1 - A) - Ag and Ay - (Ag - As) for matrices A with
dimensions do-by-dy, A; with dimensions dy-by-dz, and Az with dimen-
sions dy-by-ds and then choose some specific values for the dimensions to
get a required example.

image13.png
7. Solve the all-pairs shortest path problem for the digraph with the following

[|
| |
[]

288 o
groowg
8 omn
cwg g w

0
6
B
B
3

image14.png
) _ =T D), k), 1]
a¥ =min(@ ™", af " +aff) forkz1, 4 =wy. @19

image15.png
What elements of matrix D(*~1) does dj; , the element in the ith row and
the jth column of matrix D*), depend on? Can these values be changed

by the overwriting?

image1.png
Show that we can simply overwrite elements of R(*~1) with elements of
R™) without any other changes in the algorithm.

image2.png
3. Explain how to implement Warshall’s algorithm without using extra mem-
ory for storing clements of the algorithm’s intermediate matrices

4. Explain how to restructure the innermost loop of the algorithm Warshall
to make it run faster at least on some inputs

image3.png
3. Show that we can simply overwrite elements of R~V with elements of
R™) without any other changes in the algorithm.

4. What happens if RE-V[i, k] =

07

image4.png
3. Write a pseudocode for a linear-time algorithm that generates the optimal
binary search tree from the root table

image5.png
3. k = R[1.n] indicates that the root of an optimal tree is the kth key in the
list of ordered keys a1, ... an. The roots of its left and right subtrees are
specified by R[L,k — 1] and R[k + 1,n], respectively.

