MA/CSSE 473 – Design and Analysis of Algorithms
Homework 10 (70 points total)  Updated for Fall, 2014
[bookmark: _GoBack]Note for 2016-17:     consider adding a problem or two on 2-3 trees.  Perhaps #7, 8, or 9.

Problems for enlightenment/practice/review (not to turn in, but you should think about them): 
As usual, how many of these you need to do serious work on depends on you and your background.  I do not want to make everyone do one of them for the sake of the (possibly) few who need it.  You can hopefully figure out which ones you need to do.
6.1.1 [6.1.2]	(closest numbers in an array with pre-sorting)
6.1.2 [6.1.3]	(intersection with pre-sorting)
6.1.8 [6.1.10]	(open intervals common point)
6.1.11	(anagram detection)
6.2.8ab	(Gauss-Jordan elimination)
6.3.9	(Range of numbers in a 2-3 tree)
6.5.3	(efficiency of Horner's rule)
6.5.4	(example of Horner's rule and synthetic division)
7.1.7	(virtual initialization)
Problems to write up and turn in:
1. (10)  6.1.5 [6.1.7]	(to sort or not to sort)  
2. (10)  6.2.8c	(compare Gaussian Elimination to Gauss-Jordan) You should compute and compare actual number of multiplications, not just say that both are Θ(n^3).  Use division when you compare.
3. (  6)  6.3.7	(2-3 tree construction and efficiency)
4. (20)   Not in book       (sum of heights of nodes in a full tree) In this problem, we consider completely full binary 
                                        trees with N  nodes and height H   (so that N = 2H+1 – 1 ) 


                 (a) (5 points) Show that the sum of the heights of all of the nodes of such a tree can be 
                        expressed as    .
 (b) (10 points) Prove by induction on H that the above sum of the heights of the nodes is 
       N - H - 1.  You may base your proof on the summation from part (a) (so you don't need 
       to refer to trees at all), or you may do a "standard" binary tree induction based on the 
       heights of the trees, using the definition that a non-empty binary tree has a root plus left 
       and right subtrees. I find the tree approach more straightforward, but you may use the 
       summation if you prefer.
(c) (3 points) What is the big Θ estimate for the  sum of the depths of all of the nodes in such a  tree?  
(d) (2 points) How does the result of parts (b) and (c)  apply to Heapsort analysis?
      Example of height and depth sums:  Consider  a full tree with height 2 (7 nodes).
      Heights:   root:2, leaves: 0.  Sum of all heights:  1*2 + 2*1 + 4*0 = 3.
      Depths:  root: 0, leaves: 2.   Sum of all depths:  1*0  + 2*1 + 4*2 = 10.
5. (10)  6.4.12 [6.4.11]	(spaghetti sort)
6. (  4) 6.5.10 [ 6.5.9]	(Use Horner's rule for this particular case?)
7. (10)  7.1.6	(ancestry problem).  You may NOT assume any of the following:
·         The tree is binary
·         The tree is a search tree (i.e. that the elements are in some particular order)
·         The tree is balanced in any way.

The tree for this problem is simply a connected directed graph with no cycles and a single source node (the root).
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