HW 09 textbook problems and hints
4.4 (1 – 5)
[image:]
10. Breaking the chocolate bar can be represented by a binary tree.
5.3 (2 - 9)
[image:][image:]
[image:]
5.4 (3- 9, 4 - 5, 5 - 5)
[image:]
2. We traced the algorithms on smaller instances in the section.
[image:]
[image:]
[image:]
11. Represent the disk movements by flipping bits in a binary n-tuple.

[bookmark: _GoBack]5.5 (6 - 6)
[image:]
[image:]

image6.png
10. » Design a decrease-and-conquer algorithm for generating all combina-
tions of & items chosen from m, i.e., all k-element subsets of a given n-
clement set. Is your algorithm a minimal-change algorithm?

image7.png
10.

There are several decrease-and-conquer algorithms for this problem. They
are more subtle than one might expect. Generating combinations in a pre-
defined order (increasing, decreasing, lexicographic) helps with both a de-
sign and a correctness proof. The following simple property is very helpful.
Assuming with no loss of generality that the underlying set is {1,2, .., n},
there are (1) k-subsets whose smallest element is 7, i 1

image8.png
11. Gray code and the Tower of Hanoi

(a) & Show that the disk moves made in the classic recursive algorithm
for the Tower-of-Hanoi puzzle can be used for generating the binary
reflected Gray code.

(b) » Show how the binary reflected Gray code can be used for solving
the Tower-of- Hanoi puzzle.

image9.png
2. Consider ternary search—the following algorithm for searching in a
sorted array A(0.n — 1 if n = 1, simply compare the search key K
with the single element of the array; otherwise, search recursively by com-
paring K with A[|[n/3]], and if K is larger, compare it with A[[2n/3]] to
determine in which third of the array to continue the search.

a. What design technique is this algorithm based on?

b. Set up a recurrence relation for the mumber of key comparisons in
the worst case. (You may assume that n = 3*.)

k

c. Solve the recurrence for

d. Compare this algorithm’s efficiency with that of binary search.

image10.png
2. The algorithm is quite similar to binary search, of course. In the worst
case, how many key comparisons does it make on each iteration and what
fraction of the array remains to be processed?

image1.png
10. Chocolate bar puzzle Given an n-by-m chocolate bar, you need to break
it into nm 1-by-1 pieces. You can break a bar only in a straight line, and
only one bar can be broken at a time. Design an algorithm that solves the
problem with the minimum number of bar breaks. What is this minimum
mumber? Justify your answer by using properties of a binary tree.

image2.png
9. A digraph is called strongly connected if for any pair of two distinct ver-
tices u and v, there exists a directed path from u to v and a directed path

image3.png
from v to u. In general, a digraph’s vertices can be partitioned into dis-
joint maximal subsets of vertices that are mutually accessible via directed
paths of the digraph; these subsets are called strongly connected com-
ponents. There are two DFS-based algorithms for identifying strongly
connected components. Here is the simpler (but somewhat less efficient)
one of the two:

Step 1. Do a DFS traversal of the digraph given and number its vertices
in the order that they hecome dead ends.

Step 2. Reverse the directions of all the edges of the digraph.

Step 3. Do a DFS traversal of the new digraph by starting (and, if neces-
sary, restarting) the traversal at the highest numbered vertex among still
unvisited vertices.

The strongly connected components are exactly the subsets of vertices in
each DFS tree obtained during the last traversal.

a. Apply this algorithm to the following digraph to determine its strongly
connected components.

b, What is the time efficiency class of this algorithm? Give separate
answers for the adjacency matrix representation and adjacency list repre-
sentation of an input graph.

c. How many s

trongly connected components does a dag have?

image4.png
9. a. Trace the algorithm on the input given by following the steps of the
algorithm as indicated.

b, Determine the efficiency for each of the three principal steps of the
algorithm and then determine the overall efficiency. Of course, the an-
swers will depend on whether a graph is represented by its adjacency
matrix o by its adjacency list

image5.png
2. Generate all permutations of {1,2,3,4} by
a. the bottom-up minimal-change algorithm.
b the Johnson-Trotter algorithm.

c. the lexicographic-order algorithm.

