473 Levitin problems and hints HW 06

Problem 1: (6) 3.5.3 [5.2.3] Independence of properties from specific DFS traversals. Explain your answers.
[image:]
Author's Hints:
[image:]

Problem 2: (10) 3.5.8a [5.2.8a] Bipartite graph checking using DFS
[image:]
Author's Hints:
[image:]
Problem 3: (5) 4.1.1 [5.1.1] Ferrying Soldiers
[image:]
Author's Hints:
[image:]
Problem 4: (5) 4.1.4 [5.1.3] generate power set
[image:]
Author's Hints:
[image:]

Problem 5: (5) (not in book) [5.1.9] binary insertion sort efficiency
[image:]
Author's Hints:
[image:]In the 3rd edition, it says "Prove that a nonempty dag must have at least one source." That additional word is necessary!

Problems 6: (9) 4.2.6 [5.3.6] dag source
[image:]
Author's Hints:
[image:]

Problem 7: (9) 4.2.9 [5.3.9] Strongly connected components of a digraph
[image:][image:]
Author's Hints:
[image:]

Problem 8: (15) Not from the textbook.
 [image:]
Problem 9: (9) 4.3.2 [5.4.2] Examples of permutation generation algorithms
[image:]
You do not have to write any code, but you can do it that way if you wish.
Author's Hints:
[image:]
Problem 10: (10) 4.3.10 [5.4.10] Generation of all k-combinations from an n-element set
[image:]

Author's Hints:
[image:]

Problem 11: (10) 4.3.11 [5.4.11]
[image:]
Author's Hints:
[image:]

[bookmark: _GoBack]
image6.png
1. Solve the problem for n

image7.png
4. Design a decrease-by-one algorithm for generating the power set of a set
of n clements. (The power set of a set 5 is the set of all the subsets of S,
including the empty set and S itself.)

image8.png
4. Use the fact that all the subsets of an n-element set § = {a1,....an} can
be divided into two groups: those that contain a, and those that do not.

image9.png
9. & Binary insertion sort uses binary search to find an appropriate position
to insert A[i] among the previously sorted A[0] < ... < A[i—1]. Determine
the worst-case efficiency class of this algorithm.

image10.png
9. The order of growth of the worst-case number of key comparisons made
by binary insertion sort can be obtained from formulas in Section 4.3
and Appendix A. For this algorithm, however, a key comparison is not
the operation that determines the algorithm’s efficiency class. Which
operation does?

image11.png
6. a. Prove that a dag must have at least one source.

b. How would you find a source (or determine that such a vertex does
not exist) in a digraph represented by its adjacency matrix? What is the
time efficiency of this operation?

c. How would you find a source (or determine that such a vertex does
not exist) in a digraph represented by its adjacency lists? What is the
time efficiency of this operation?

image12.png
6. a. Use a proof by contradiction.

b. If you have difficulty answering the question, consider an example
of a digraph with a vertex with no incoming edges and write down its
adjacency matrix.

c. The answer follows from the definitions of the source and adjacency
lists.

image13.png
9. A digraph is called strongly connected if for any pair of two distinct ver-
tices u and v, there exists a directed path from u to v and a directed path

image14.png
from vto u. In general, a digrapl’s vertices can be partitioned into dis-
joint maximal subsets of vertices that are mutually accessible via directed
Paths of the digraph; these subsets are called strongly connected com-
ponents. There are two DFS-hased algorithms for identifying strongly
comnected components. Here is the simpler (but somewhat less efficient)
one of the two:

Step 1. Do a DFS traversal of the digraph given and mmnber its vertices
in the order that they become dead ends.

Step 2. Reverse the directions of all the edges of the digraph.

Step 3. Do a DFS traversal of the new digraph by starting (and, if neces-
sary, restarting) the traversal at the highest mumbered vertex among still
unvisited vertices.

The strongly connected components are exactly the subsets of vertices in
cach DFS tree obtained during the last traversal.

a. Apply this algorithm to the following digraph to determine its strongly
comnected components.

O—/_ @
"o‘ g
— W
b. What is the time efficiency class of this algorithm? ~Give separate

answers for the adjacency matrix representation and adjacency list repre-
sentation of an input graph.

c. How many strongly comnected components does a dag have?

image15.png
a. Trace the algorithm on the input given by following the steps of the
algorithm as indicated.

b. Determine the cfficiency for cach of the three principal steps of the
algorithm and then determine the overall efficiency. Of course, the an-
swers depend on whether a digraph is represented by its adjacency matrix
or by its adjacency lists.

image16.png
(Miller-Rabin test) For this problem you will need the excerpt from the Dasgupta book that is posted

on Moodle.

Let N = 1729 (happens to be a Carmichael number, but you should not assume that as

you discover the answers) for all parts of this problem.

(a) How many values of a in the range 1,,1728 pass the Fermat test [i.e. al”8 =1 (mod 1729)]?

(b) For how many of these "Fermat test positive" values of a from part (a)._does the Miller-Rabin test
provide a witness that N is actually composite?

() If we pick a at random from among 1, 2,...N. what is the probability that running the Miller-Rabin
test on a will show that N is composite? Rabin showed that for any N, the probability is at least
75%; what is the probability for the N=1729 case?

[Hint: writing some code is likely help you in this problem. If you do that, include the code

in your submission].

image17.png
2. Generate all permutations of {1,2,3,4} by
a. the bottom-up minimal-change algorithm.
b. the Johnson-Trotter algorithm.

c. the lexicographic-order algorithm.

image18.png
2. We traced the algorithms on smaller instances in the section.

image19.png
10. » Design a decrease-and-conquer algorithm for generating all combina-
tions of k items chosen from n, ie., all k-clement subsets of a given n-
clement set. Is your algorithm a minimal-change algorithm?

image20.png
10. There are several decrease-and-conquer algorithms for this problem. They
are more subtle than one might expect. Generating combinations in a pre-
defined order (increasing, decreasing, lexicographic) helps with both a de-
sign and a correctness proof. The following simple property is very helpful.
Assuming with no loss of generality that the underlying set is {12, .., n},
there are (I~}) k-subsets whose smallest element isi,i = 1,2,..,n—k+1.

image21.png
11. Gray code and the Tower of Hanoi

() & Show that the disk moves made in the classic recursive algorithm
for the Tower-of-Hanoi puzzle can be used for generating the binary
reflected Gray code.

(b) » Show how the binary reflected Gray code can be used for solving
the Tower-of-Hanoi puzzle.

image22.png
11. Represent the disk movements by flipping bits in a binary n-tuple.

image1.png
3. Let G be a graph with n vertices and m edges.

a. True or false: All its DFS forests (for traversals starting at differ-
ent vertices) will have the same number of trees?

b. True or false: All its DFS forests will have the same number of tree
edges and the same number of back cdges?

image2.png
3. . What is the number of such trees equal to?

b. Answer this question for connected graphs first.

image3.png
8. A graph is said to be bipartite if all its vertices can be partitioned into
two disjoint subsets X and ¥ so that every edge connects a vertex in X
with a vertex in Y. (We can also say that a graph is bipartite if its vertices
can be colored in two colors so that every edge has its vertices colored in
different colors; such graphs are also called 2-colorable). For example,
graph (i) is liparniu-. while mph (i) is not.

(n)
a. Design a DFS- bm algorithm for checking whether a graph is bipartite.

b. Design a BFS-hased algorithm for checking whether a graph is bi-
partite.

image4.png
8. Use a DFS forest and a BFS forest for parts (a) and (b). respectively.

image5.png
Ferrying soldiers A detachment of n soldiers must cross a wide and deep
river with no bridge in sight. They notice two 12-year-old boys playing
in a rowboat by the shore. The boat is so tiny, however, that it can only
hold two boys or one soldier. How can the soldiers get across the river
and leave the boys in joint possession of the boat? How many times need
the boat pass from shore to shore?

