CSSE463: Image Recognition / Sunset Detector
You may work with a partner on this assignment. 
The overall goal of this project is to implement a system similar to the baseline classifier described in my ICME paper (Matthew Boutell, Jiebo Luo, and Robert T. Gray. Sunset scene classification using simulated image recomposition. IEEE International Conference on Multimedia and Expo, Baltimore, MD, July 2003; found in the Papers section of Moodle and the website). You will write MATLAB code that will extract features from sets of images, train a classifier to classify images using them, and report the results in a short conference-paper quality submission. In part 2, you’ll try applying deep learning to solve the same problem.
PART 1: CLASSICAL IMAGE RECOGNITION (SVM)
Deliverables:
1. All MATLAB code.
2. Report. The following sections mimic the organization of many conference papers. This will be good practice for your term project and for writing such papers. Other details may be found in the rubric in this folder: read it.
Abstract: Briefly summarize the entire paper, including background and approximately 1 sentence each for features extracted, classifier used, and numerical results. Pack many details concisely.
Section 1: Introduction. Why do we care about sunset detection (and scene classification as a whole)? Why is sunset detection a challenging problem? Include at least one image that shows how challenging it is. What is interesting about the proposed solution? Set the problem in the more general context of image recognition – how does it fit? Define the scope of the problem clearly, that is, what are the inputs and form of the outputs? Your goal is to grab the attention of the user so they keep reading, so make sure you do this explicitly. This section is mostly non-technical and several paragraphs long. 
Section 2: Process followed for feature extraction. Describe the process, not merely walking through your code. How did you extract the features? Give lots of details, showing an image with the grid overlaid on it. Give equations for RGB to LST. What are the theoretical ranges for each band? (It is sufficient to discuss the means, I’ll leave analysis of the standard deviations as an option for a particularly motivated team.) Discuss that this is the reason for standardizing the data (hint: most classifiers allow an option to standardize the data – you should use that option if you can; otherwise, you’d need to do it yourself). Describe how you handled images with dimensions that weren’t a multiple of the block size, and why that was OK. Since you are building on the work in the paper above, add a Reference section at the end of the paper, add that paper, and cite it here (if you aren’t sure how, see the many examples of citations in the paper above). 
Section 3: Classification. 
3a. Write a short paragraph about the baseline classifier (SVMs). How do SVMs work? (Talk about the theory, not the details of how to call the MATLAB functions.)
3b:  (skip for part 1 and save for part 2) Write a short paragraph about convolutional neural nets. Describe the architecture:  number and type of layers (convolutional, ReLU, etc and how they work), plus anything else that seems relevant. 
Section 4: Experimental setup. The last sections include details about the process regardless of the data set used. Now include details about the data set: your inputs and outputs.  How many images of each type (sunset and non-sunset) did you use in the training, validation, and testing sets? Where did they come from? (See Appendix 2 below for details.) What was the approximate range of resolutions of the images? 
Section 5: Results. 
5a: SVN results. 
Document the SVN experiments conducted. How did you choose your classifier hyperparameters (kernel scale and box constraints)? What was the accuracy of the classifier on the validation set once the hyperparameters were tuned? How many of the training images became support vectors? (Remember that generally you want higher accuracy but fewer support vectors, since too many support vectors means overfitting. You’ll probably want to balance these two.) Include a table, graph, or otherwise show evidence of experimenting with hyperparameters on the validation set. (It should contain many hyperparameters in a graph or table, not just a few hand-selected ones from your experiments. If it is too lengthy, you can move it to an Appendix and reference it in this section.) Once you tune your hyperparameters, then run your classifier on the test set and give the accuracy on the test set and also show your results in the form of an ROC curve as you vary your decision threshold away from 0. Comparing test-set accuracy with validation-set accuracy should give evidence of overfitting or not – say something about this.
5b: CNN results (save for part 2)
Document the CNN experiments conducted. How did you choose the parameters (number of epochs, batch size, learning rate)? What evidence you have that your choices were good? Tell how long it took to train each network and how long it took to predict the outputs for the 1000 test images (either total time for the batch or dividing by 1000 to get the time per image). How do these compare to the respective times for SVMs? When reporting runtimes, it is important to give some basic specifications about the computer you used (at least laptop vs server; CPU vs. GPU). 
Section 6: Discussion. 
6a: Show sample test-set images that were classified successfully and unsuccessfully by the SVN. Include at least 8 images  - 2 of each type (FP, TP, FN, TN) - and discuss for each image why the classification results seem reasonable. (For full credit, choose interesting images by selecting one of each that is in the margin and one that is far from the margin, using the predict function’s score output to tell the difference. Give the score for each image you choose.) 
6b: CNN discussion (save for part 2)
Do the same for the CNN as you did for the SVM, and call attention to results are similar to those of the SVM and those that are not. 
Section 7: Conclusion and future work. Briefly summarize your findings. Then describe what the next steps would be if you had another 2 weeks to continue working on the problem. What if you had another year? Don’t let this just be an afterthought – consider issues that you identified in the discussion. 
Process and More Hints (this is how I would direct a graduate research assistant)
Read carefully, this includes things you haven’t thought of.
1. Get the zip file of images here: http://sunset.csse.rose-hulman.edu/  
An appendix describes the image collection process.
2. Start by writing your feature extraction code for a single image, that is, calculate the 294-dimension feature vector from the image. You should probably end up encapsulating this as a MATLAB function. 
The paper uses Luv space – here, we’ll use LST space. (I have tried LST and RGB spaces and while the difference isn’t huge, LST works slightly better.) The unscaled conversion to LST color space is: 
	L = R + G + B			S = R – B		T = R – 2G + B
There is no need to scale them (like dividing L by 3) unless you want to visualize results in this color space. Test your code for bugs (e.g., L should be the grayscale image, and you should have some negatives in S and T). There is sample output on one image in this folder to help you “unit-test” this part of your code. It follows the format below.
3. Write a script that will loop over the whole sets of images (training, validation, and testing sets), extracting features from each one. 
If any images cause your script to crash, let me know – it's probably save to delete them if there are only 1-2. Also, if your computer generates any images like Thumbs.db, you can ignore or delete them. Note: you may find MATLAB’s imagedatastore functions to be very helpful for this – they are relatively new and very helpful, especially when you complete part 2. https://www.mathworks.com/help/matlab/ref/imagedatastore.html
I also included a couple files with some skeleton code that you may find helpful.
Save the features into a matrix (X). You will also have a vector (Y) of class labels, +1 for sunsets, and -1 for nonsunsets, or otherwise pass the labels into the SVM.
Structure of matrix X:
[img1L11, img1L11, img1S11, img1S11, img1T11, img1T11, img1L12, …  ;
 img2L11, img2L11, img2S11, img2S11, img2T11, img2T11, img2L12, …  ;
 …
imgNL11, …  									];
As an example, imgnLij means the first moment (mean) of the L band of the block in row i, column j of img n, where i = 1:7, j = 1:7, n = 1:N. Each row of the matrix is the 294 features extracted from a single image.  L is second moment (standard deviation); you’ll use standard deviation, although we used variance in the ICME paper… they works about the same. Note that for a 2D matrix M, std(std(M)) does not compute the correct standard deviation! (try it on [3 3; 1 5]) Instead, convert M to a column vector using the : operator first, as in std(M(:)).
Note that some of the S and T values should be negative – if not, maybe you forgot to transform to type double to do math?
I give some values for one image in an auxiliary file in this folder, to help you “unit-test” your feature extraction code. Make sure you get the same values.
4. You will then want to normalize your features. Why? L, S, and T bands have somewhat different scales (from the formulas, what are they?), as do the means and variances, so distances in this space will be skewed since each dimension will be weighted differently. The easiest method by far to handle this: 
a. Look up SVM training parameters for options on standardizing the data. 
Other options that you could use if SVM’s didn’t give this option. (This is what we used to have to do and I include it here just because it’s interesting.)
b. Scale each feature type (for example, all the L) so that its max value for any block in the image set = 1 and its min value = 0. To do this for L, you will need to find the max and min of all the L means of all 49 blocks in all images in all training and testing sets together (don’t normalize each image or set separately)! [Yes, you should read the ~1000 images from all 4 folders into a single feature matrix and pass that to the normalize function. Then split it back up when you train and test.] Then the output is out = (orig-min)/(max-min) – you can verify this works. You may use the normalizeFeatures01.m code I gave you to compute this.
c. Scale so that it’s “zero mean, unit variance”. This is another typical approach: make the mean of that single feature type to be 0 and the standard deviation 1 by first subtracting the mean for the feature type, then dividing by its standard deviation. This is a little less sensitive to outliers, although past students have found that options (b) and (c) work roughly the same. 
5. (Optional time saver) At this point, you probably have a bunch of matrices of features ({sunset, non} x {train, validate, test}. You can save your results in a file so that you don’t have to keep extracting features every time you turn on your machine or rerun your classifier with a new set of parameters:
	save(‘features.mat’, ‘X’, ‘Y’) will do this;
	save(‘features.mat’) saves all the variables in the workspace. 
	load(‘features.mat’) will retrieve them back into memory.
6. Train the classifiers, experimenting with the hyperparameters (kernel scale and box constraints) in an attempt to optimize them. Warning: this takes time; you should automate this process using a script and looping. The two MATLAB references in the SVM lab (first, second) had some good suggestions about MATLAB svm functions, that are useful for this. Consider bayesopt. Or just brute force combinations at different scales and plot them using mesh or surf. This paper also has a technique worthy of consideration. Calculate accuracy on the regular validation set for each hyperparameter choice so you can check which are best. Like I stated in the notes on Section 5: SVM results above, your goal is to convince me that you found something that it optimal or close to it by showing the output of lots of runs in a table or graph– see here for examples. Save transcripts or graphs of these runs, so you have a record for your report: you need to demonstrate that you tried to optimize your parameters. 
Don’t expect your accuracy to be the same as the baseline I reported in the paper. Accuracy can vary quite a bit depending on how hard the set of images is. Accuracy could be lower, because one has a smaller training set, and thus haven’t filled the feature space as well, or it could be higher because the sunsets are more “obvious”. Again, don’t just choose a few selected hyperparameter combinations.
Don’t just consider validation set accuracy – also consider if you are overfitting, using some measure like the % of the training set that are support vectors – in your analysis. Each hyperparameter set will give you a different set, each with a certain number of support vectors. Sometimes you can change the kernel scale and get by with fewer support vectors while keeping the accuracy fairly constant. (If you have tested them for a whole range of scales and box constraints and saved the accuracies and numbers of support vectors for each in matrices, you can look at the tables or plots of each.) You’ll probably want to balance them in some way. How you do that is up to you.
7. Once you have one “best” SVM, create an ROC curve of its performance on the test set. What do you vary to get all the points that comprise the curve? Don’t vary the hyperparameters of the SVM anymore. Instead, vary the threshold between what you call a sunset and a non-sunset. 

Here is a reminder of ROC curves from class, applied to SVMs. There are 2 outputs from predict: [label, score] = predict(…). label is +/1 as you saw in lab and score is a real number (distance from margin, pos or negative, depending on which side of the default threshold it's on). This default threshold between classes is 0, but you can move it, say in increments of 0.1. 

Let’s say we classify 4 images, and y1 = [3.2, -1.3, 0.03, -0.01] 

If the threshold (call it t) = 0, then the first and third are detected as sunsets; if -0.1, then the first, third, and fourth, and if +0.1, then only the first would be considered a sunset. (Make sure you understand this.)

In the general case, assume that strong sunsets have large positive outputs, strong non-sunsets have large negative outputs, and some weak examples of each are near 0 (hard to classify since ambiguous). 

With a high threshold, say t = 5, then all (or nearly all) of the images with output above 5 should be sunsets, so you get few false positives. Thus your false positive rate (FPR) is very low, which is good. However, your true positive rate (TPR, i.e., recall) will be very low as well, since all those true sunsets with output below 5 get called non-sunsets. 

In the other extreme case, t = -5, you get high TPR (good), but a high FPR as well (bad). With t = 0, (the default), you get a balance. 

So once you tune your SVM’s hyperparameters on the validation set, you run the SVM once on the test set and it outputs score. You then write code to classify the set of images based on a threshold. To get the curve, put that code in a loop, and calculate the true positive rate and a false positive rate for each threshold. Then graph TPR vs. FPR. I gave you a starting point (roc.m), but you should adjust it to make it look nicer; for example, I think that if you have many points to graph, that the default or given circle size is too large.

8. Look at some of your successes and failures and include at least 2 example images of each type in your report. Hypothesize why you got some of them right and some wrong. If a particular result doesn’t make sense, it’s OK to say that too, I’ve come across my share of mystifying images; the point is that you give it some thought. Choose images as directed in the first part of this document.

(Part 2 on next page)

PART 2: DEEP LEARNING (CNN)
In this part, you will experiment with using a convolutional neural network (CNN) to perform classification of sunset images. As you know, CNN’s perform both feature extraction and classification of images. 
Deliverables:
1. All MATLAB code.
2. Report. 
a. Address any feedback on your draft of part 1 by adding/re-experimenting/rewriting as needed. (Note: I will re-read and re-grade these sections to see that you did this – generally, if you had lost points on part 1, then taking my advice will lead to an improved score for these sections and ignoring my feedback will likely earn you a lower score due to perceived laziness.)
b. Modify your paper to include CNNs. First, add the new sections 3b, 5b, and 6b, following the instructions above. Second, modify all the other sections needed (for example, abstract, introduction, conclusion) to include your CNN work. Just adding the words “and CNNs” is clearly insufficient – add something significant about them, rewriting what you had for part 1 as needed to incorporate them.
Process and Hints: Overall Idea
It takes time to train and tune the hyperparameters of deep neural networks. Thus, we should try to leverage the work of other researchers if possible. There are 4 options:
1. One possibility would be to use a pre-trained network like AlexNet, VGG (either version) Inception, GoogLeNet, or ResNet (any version), to classify sunsets. (All of these are available to you in MATLAB.) Unfortunately, while they are all trained to recognize the same 1000 image and object classes as each other, none of those classes is sunset. 

2. CNN for feature extraction. The next option is to use the feature extraction part of one of the pre-trained CNNs and then use the features extracted for each image as inputs for an SVM (one different than the one from Part 1, so must be trained and tuned in the same fashion as that one). 

3. The third option is to use transfer learning. Transfer learning in general means re-using most of a pre-trained CNN and just replacing and re-training a few layers. In image recognition, we re-use the feature-extraction part of the CNN and just replace and re-train the fully-connected layers. Train this network is usually faster (on the order of hours instead of days or weeks) since it only needs to learn the weights of those last few layers. 

4. The final option is to build and train a CNN from scratch, using a similar structure as these other CNNs. 
You can read about these options here: https://www.mathworks.com/help/nnet/ug/pretrained-convolutional-neural-networks.html That page, along with pages it links to, describe how to download and use the common pre-trained networks and even how to import models from other deep learning frameworks like Caffe and Keras/Tensorflow. You should have learned how to do this in the lab.
I will not dictate what options you do. I have tried options (2) and (3) and think they are the most straightforward. Students who have taken the Deep Learning class might want to try option (4) to compare MATLAB’s deep learning features with those of Keras; students who haven’t taken that course should either be prepared to invest some extra hours of effort to learn option (4) or simply choose another option.  
Here are some hints from my experience. 
Training networks and even using pre-trained nets can take much memory and compute time (although sometimes they can train quickly). See Appendix 2 for options and hints.
For feature extraction, you’ll want to use the activations of one of the last layers in the network as your features. Learn how to use the activations function. The links above teach about this.
For transfer learning, make sure to capture and include the figure that shows accuracy on the training and validation sets for your report. They are formatted like in Figure 1.
[image: ../../../Projects/Asn3%20Sunset%20detector/Transfer%20blurred.png]
Figure 1: Example of output from MATLAB’s trainNetwork() function.
Which pre-trained network works best? Does the feature extraction technique with an SVM have any chance at matching the accuracy of a CNN built by using transfer learning? You have a lot of flexibility here within these requirements:
1. You must try at least two of options (2) - (4) above. Compare the performance to each other and to the baseline from part 1. If using options (2) or (3), most students like AlexNet, although it’s pretty easy to try another.

2. For each option you try, document your process and results clearly like you did in Part 1, for example showing how you used the validation set (as in, CNN training figures or evidence of SVM hyperparameter tuning) and reporting the accuracy and generating an ROC curve for the test set. (You’ll have to consider how to generate an ROC curve from a CNN output. Hint: you could use the output of the CNN’s softmax or the activations on the layer before the softmax.) Also give runtime.



Appendix 1: FAQ
1. How should we determine the number of epoch and iterations based on our sunset database? Or more specifically, As mentioned in the class, early stopping is one of the most important parameters, but I do not see any parameter in the option that represents that variability. How do we set that up? 
Good questions: as you know, you specify training options to the CNN trainNetwork function. Use an option called ValidationPatience in the trainingOptions. See here: https://www.mathworks.com/help/deeplearning/ref/trainingoptions.html#mw_c2ab36f1-691f-40d4-b894-cba9f7b27100 
for details. You might want to set maxEpochs to some really large number and use ValidationPatience of 3, for example, so that it will train until it hits 3 epochs for which the validation error rate is better than the min validation error (before overfitting). The other option is just to guess how many epochs it will need and try it - maybe 4 iterations is enough like you used in lab?
2. How will we integrate this into our existing detector?
I'd start with a fresh MATLAB script since in part 1, you did feature extraction. But before that, you used  imageDatastores to read in the various data sets in part 1. With CNN training, the input is also raw images, so you can just pass the imageDatastore in to the network! The only extra thing you'll need to do, since AlexNet requires images to be 227x227, is to rescale your training images to be that size. You could find out how to resize, but I know of 2 ways:
a. Re-visit what you read about AlexNet and search for "To automatically resize". It tells an easy way to resize using a library function.
b. You can specify the read function as a parameter to the ImageDatastore function, like this (the @ syntax is just a function pointer if you are familiar with that term):
rootdir = '/Users/boutell/Documents/csse463/Sunset/images/';
subdir = [rootdir 'train'];
trainImages = imageDatastore(...
    subdir, ...
    'ReadFcn', @rescale, ...
    'IncludeSubfolders',true, ...
    'LabelSource', 'foldernames');

function img = rescale(file)
    img = imread(file);
    img = imresize(img, [227, 227]); % from sz = net.Layers(1).InputSize 
end




Appendix 2: Running CNNs
These networks are larger than SVMs so you’ll need to figure out how to run them. Here are options:
1. Run it on your laptop’s CPUs. Past students and I found that they fit in memory fine but took several hours (perhaps 7-8 hours) to train even using transfer learning. Plan ahead and you’ll be fine. 
2. Run it on your laptop’s GPUs. Past students found that they can run out of GPU memory and crash. 
3. Run it on a teammate’s personal gaming desktop that has beefy GPUs and memory. When they work, GPUs can give up to 100x speedup over CPUs.
4. Run it on a department server that has beefy GPUs and memory. MATLAB and the neural net toolboxes are installed on noether, gauss, and hinton (noether.csse.rose-hulman.edu, gauss.csse.rose-hulman.edu and hinton.csse.rose-hulman.edu). They don’t have AlexNet or other nets pre-installed, since plugins are installed on a per-user basis. The only way I know how to install them is to use a process like you did in the lab (using the plug-in manager in the MATLAB GUI), which means you’ll need to capture GUI windows from the server. To do this, install software like XQuartz for Windows or Mac and then use the –X command when you ssh (like: ssh -X <username>@<server address>). The tool should start as you start the ssh session, and after you run the MATLAB command, it will open up a window that looks just like the MATLAB you have on your computer. (We think that –X should just work on Ubuntu without needing XQuartz.)
[bookmark: _GoBack]Appendix 3: Image collection process
Flickr is a photosharing website that has APIs for image download. The typical user is a semi-professional photographer.
I started with sunset images from this Flickr group: https://www.flickr.com/groups/sunsetcentral/pool/ . The group contained 19,379 photos taken by over 1600 photographers. A single human user examined thumbnails of the first 2491 photos (enough so that over 2000 remained after pruning). 460 photos that were clearly not detectable sunsets were pruned (52 of which on a second pass looking at medium-resolution images): 
black and white photos, 
those without sun or at least warm-colored sky present (for example, those presumably of a late sunrise or early sunset),
those of a night sky,
those of a red sun on a gray/black background, 
close-ups of only the sun
those of the sun reflected off mountains or buildings but taken pointing away from the setting sun, 
those with provocative foreground content, 
those with strong photographic effects (e.g., taken through sunglasses or in a rear-view mirror) or post-capture effects like photo montages or thick borders added. 
The remaining 2032 photos include some with large foreground objects, weakly-colored or very dark skies; the intent was not to make an ideal or easy set, but a fair set. Admittedly, this pruning was done quickly, and some remaining photos will be questionable as sunsets. 
I used this group as a representative collection of general nonsunset photos: https://www.flickr.com/groups/photography-club-of-flickr/pool/ 
It has 9,585 photos taken by almost 400 photographers. A single human user examined thumbnails of the first 3374 photos (enough so that over 2000 remained after pruning). 1347 photos were pruned (125 on the second pass): 
sunsets (a small fraction),
black and white photos (surprisingly many), 
those with provocative foreground content, 
those with strong photographic effects (e.g., taken through sunglasses or in a rear-view mirror) or post-capture effects photo montages or like thick borders added (a surprisingly large number). 
Like the sunsets, the remaining 2027 photos could be questionable for some reason. 
I took the first 800 images in each set for training, the next 300 for validation, and the next 500 images for a test set. (I reserved the final 400+ images for future use.)

You are welcome to report to me any photos that you believe should not be in the dataset in the future.
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