CSSE463 Image Recognition 



Lab 6: CNNs


Outcome:

Learn the process of using CNNs for transfer learning and feature extraction on toy problems.

As presented in lecture, one often does not need to build a convolutional neural network (CNN) from scratch to gain some benefit from a CNN. Instead, one can leverage pre-trained CNNs either using transfer learning or feature extraction. In this lab, you’ll use MATLAB’s tutorials to do this.
Deliverables:
1. This is a very different format. Since you aren’t writing code, you’ll answer the questions in the Moodle quiz for Lab 6.

2. There is at least one figure to submit to the dropbox.

Step-by-step:

1. Go to https://www.mathworks.com/help/nnet/ug/pretrained-convolutional-neural-networks.html Read that page, noting that there are over 10 pre-trained networks available for download! We’ll focus on AlexNet, one of the first popular CNNs and one of the smaller ones among the group.
Part 1: Transfer Learning

2. Read about Transfer Learning and then follow the link to Transfer Learning using AlexNet.
3. Load the example on that page by clicking the “Try It In MATLAB” button or just entering

openExample('nnet/TransferLearningUsingAlexNetExample')

in MATLAB. Read the documentation for that example using either the website or the comments in the code. Run one section at a time by choosing “Run Section” in MATLAB on each highlighted section of the code.
4. Note the overall structure of the network. How many layers does it have? 

5. What size filters are used in Layer 2? What, not 3x3? It’s OK, later layers are 3x3 (and indeed, newer networks do tend to have mostly 3x3 layers. How many filters are in Layer 2? (Note: answer boldface questions in the Moodle quiz.)
6. Note that you really only need to learn weights in the new layers. How does the tutorial specify that the new layers should be learned faster than the pre-existing ones?
7. Aside: Read carefully what it says about the imageDataAugmenter under “Train Network”. What do the augmentation operations remind you of? (Hint: on day 1 of class, I assigned you a paper to read by day 2.) 
8. Train the network using the default 6 epochs (even though it’s likely it will converge in fewer epochs).

9. When training completes, how many iterations did it run? 
10. What was the validation accuracy?

11. The trainingOptions called ‘Plots’ is what causes it to show a plot like this: 
[image: image1.png]



Save your plot as a png file and submit it to the dropbox for Lab 6. It will look similar to the one above or in the webpage, but .will of course have today’s date. You could grab a screenshot of it, but it’s fairly easy to save it from MATLAB. Searching online for “matlab train network save plot” will lead you to some code like this: figs = findall(…) to find the hidden training plot. Then you can search how to save a MATLAB figure as a png file. 
Part 2 Feature Extraction: The next questions have to do with using a pre-trained CNN for feature extraction.
12. Go back to the pre-trained models page and follow the link to Feature Extraction Using AlexNet.

13. Load the example from that page:
openExample('nnet/FeatureExtractionUsingAlexNetExample')

14. What AlexNet layer does this example use for feature extraction? 
15. What function extracts features? Hint: fill in the blank: 
trainingFeatures = ___________(net,trainingImages,layer);
16. They are using a multi-class SVM for this 4-class problem (hence the fitcecoc function (ECOC = Error-Correcting Code, another way to train multiclass SVMs besides the 1-vs-all and pairwise SVMs that we discussed in class). You will still use fitcsvm in the sunset project since it is a binary classification problem!
17. Note back on the main tutorial page that the last link is to Transfer Learning Using GoogleNet. This shows how to use a different pre-trained network that isn’t AlexNet. That isn’t part of this lab, but you might want to try a different network than AlexNet on the sunset project. For example, ResNet-18 or MobileNet-v2 both look like nice tradeoffs between speed, accuracy, and network size (although a comment that ResNets are good for feature extraction makes that one particularly tempting to use).
