CSSE463 Image Recognition 


Lab 5: Support Vector Machines


Objective:

1. Learn how to use MATLAB’s SVM functions to prepare for the next large project.
Report Grading Rubric:
	Score
	Meaning
	Description

	10
	Exemplary
	Report exceeded expectations. Complete, well-written and presented, and particularly insightful answers. Worth posting. 

	9
	Very Good
	Complete, well-written and presented, and insightful.

	8
	Satisfactory
	Complete. Writing, presentation, and insights are reasonable.

	7
	Ordinary
	Minor detail missing, or writing weak. 

	6
	
	

	5
	Deficient
	Basically complete, but didn't demonstrate full understanding of the material.

	4
	
	

	3
	Unsatisfactory
	Incomplete or last-minute attempt.

	2
	
	

	1
	
	

	0
	Not submitted
	


Deliverables:

Code: Your modifications to toyProblem.m (and any other functions you write):

Train an SVM from the first set of data (xTrain, yTrain). 

Evaluate and output the class of each point in the test data.

Determine the number of true positives, false negatives, true negatives, and false positives, then calculate TPR, FPR, and accuracy from this.

Writeup must include:

· the kernel function and parameters (scale, box constraints) you used

· a table of the number of true positives, false neg., false pos., and true neg.
· the calculated TPR, FPR, and accuracy
· the graph of the training data and decision boundary (contour plot).
· An explanation of your results. 
Summary:

You will use the demo function given with the SVM toolbox as an example of the commands for training SVMs from some examples and using them to classify other examples. You will then train an SVM to classify a new set of data, gaining the opportunity to experiment with different kernel functions and parameters. All of this will be valuable background to the next big project, sunset detection.
Overall Directions:

1. Copy and unzip the svm.zip package in the folder containing these instructions. 
2. Run the demsvm1.m script and read the MATLAB output – it’s a short tutorial. Ask questions about anything that you don’t understand.

3. Open demsvm1.m, looking for where it trains the SVM and where it uses it to classify points. Note the usage of the two functions, fitcsvm and predict. Ask questions if you don’t understand something. Note also the two labels used for the classes (what are they? I discussed this in class, but this is really important to getting SVMs working correctly.) 
4. When you are done running the demo, open up the trained net in MATLAB and see what properties it has. For example, how does it store the support vectors and the values of alpha?

Resources

At any point in this lab or in the sunset detector project, if you want more details, check out the MATLAB docs:

https://www.mathworks.com/help/stats/support-vector-machines-for-binary-classification.html (over-all how-to, tons of info here, including how to optimize hyper parameters)

https://www.mathworks.com/help/stats/fitcsvm.html (focus on training, lots here too)

https://www.mathworks.com/help/stats/classificationsvm-class.html (what’s in a trained SVM?)

Now you should be ready to experiment with creating another SVM to classify points from another data set.

4. Open the toyProblem.m script. It uses other functions I wrote to generate one data set for training and one for classification. Please add to the script code to do the following:

a. Train an SVM from the first set of data (xTrain, yTrain). You may use any kernel function you like – even though the data set isn’t linearly separable, this is a good time to try out the baseline linear SVM, as well as polynomial and RBF kernels. 

Note: each x = (x1, x2) is a 2D feature vector, and y is the class (thus, they aren’t just x- and y-coordinates)!
b. Predict and output the class of each point in the second set of data (xTest) using the script. By default, it uses 0 as a threshold. 
c. From the combination of this output and of yTest (the true labels), calculate the # true positives, # false negatives, # false positives, and # true negatives. Use this to calculate the accuracy on the test set, as we defined in class. If you find accuracy that is lower than 90%, take note of it and try a different kernel type and parameters as in 4a. Keep experimenting until you get 90% accuracy on the test set. 

d. Once you get 90% accuracy on the test set, add it to your report. Also report your # true positives, # false negatives, # false positives, and # true negatives in a table. Also report the true positive rate (TPR, or recall) and false positive rate (FPR). Refer back to your notes if you haven’t yet memorized how to find these.
d. Generate the graph of the training data with the contour plot of the decision boundary and copy it to your report. (I included a little commented-out code to help with this.)
e. Explain your experiments and results. Are they reasonable, given the data? Specifically, does your classifier achieve 100% accuracy? Why or why not?
Reminder on grading: If you are aiming to earn a 10, what will you do to impress me? I’ll give a few suggestions here, only because they are all things that you will need to do for the sunset paper anyway so if you choose to do one of them now, you’ll need to do less later. (
· Read one of the first two MATLAB doc pages above and use one of the techniques there to try to optimize the kernel parameters (scale and box constraint). Present evidence in a graph or table that your values are optimal (or close to it) for accuracy on the test set– like here. (I included more detail in the sunset specs, part 1, item 6, if you want to look ahead.)
· The svm predict function gives both the class (+1, -1) and the real-valued distance from the boundary for each example. The default threshold between classes is 0, but if you vary that threshold in small increments, each threshold gives you a point on an ROC curve. (I included more detail and the code to create an ROC curve in the sunset specs, part 1, item 7, if you want to look ahead).

· Change your kernel parameters so that you get 3 different examples: one in which the classifier overfit the training set, one in which it underfit the set, and one in which it fit the training set reasonably well. (I’m not giving you a definition of any of these, but your intuition is probably correct – this article and its figure here also give the intuition pretty well.) For each, report what percentage of your training set were used as support vectors.

