CSSE463 Image Recognition 


Lab 4: Shape Recognition
Report Grading Rubric:
	Score
	Meaning
	Description

	10
	Exemplary
	Report exceeded expectations. Complete, well-written and presented, and particularly insightful answers. Worth posting. 

	9
	Very Good
	Complete, well-written and presented, and insightful.

	8
	Satisfactory
	Complete. Writing, presentation, and insights are reasonable.

	7
	Ordinary
	Minor detail missing, or writing weak. 

	6
	
	

	5
	Deficient
	Basically complete, but didn't demonstrate full understanding of the material.

	4
	
	

	3
	Unsatisfactory
	Incomplete or last-minute attempt.

	2
	
	

	1
	
	

	0
	Not submitted
	


Deliverables:

Matlab code: all scripts and/or functions you wrote.

Load in the image of squares, rectangles, circles, and ellipses.

Use connected components analysis to isolate each of the individual shapes.

Compute and display the elongation, as computed from the eigenvalues of the spatial covariance matrix, for each of the shapes. 

Compute and display the circularity of each of the shapes. 

Brief report of:

· the values of these features for each shape, nicely formatted

· Rules to classify the different shapes, with some discussion of rationale and difficulties.

Summary:

We want to see how well the region-based features we’ve learned recently can be used to distinguish between squares, rectangles, circles, and ellipses. Intuitively, circularity should help us distinguish squares from circles, and spatial moments should help us distinguish squares from rectangles. How well do these work in practice? You might wonder how one could distinguish ellipses. We’ll investigate these questions on ideal images: simple binary masks of each of the shapes.

Matlab’s regionprops is off-limits for this lab! This is an outstanding way to help you really learn about these shape features. It is more involved (code-wise) than the previous ones, and I’m giving you more freedom and responsibility to make it work. Completing this lab earns you the right to use regionprops again for future labs and projects. 
Directions (they get shorter, the more you know…)

1. Load in the image of squares, rectangles, circles, and ellipses.
2. Use connected components analysis to isolate each of the individual shapes.

3. For each of the shapes, compute and display the elongation (as computed from the eigenvalues of the spatial covariance matrix). 
4. For each of the shapes, compute and display the circularity (using either of the methods given in class). Either one works about the same for this task, so it’s really your choice. If you use C1, then use |P8|, not |P4|.
5. Write up a report, with

a. an opening paragraph, in which you summarize the problem
b. values of each feature for each shape (in a table) and some text describing it.
c. Rules that use these features to distinguish the 4 types of shapes in these images. Code it up using a few conditions. I did this and got most (but not all) correct. Explain your rationale for your rules and any difficulties you have with this task. 
d. the true class and detected class of each shape (added to your table).

Hints …

…on computing spatial covariance efficiently in Matlab:

This should be review, but one more time: 

Recall that position (1,1) in the spatial covariance matrix is 
[image: image1.wmf](

)

å

Î

-

R

c

r

c

c

N

)

,

(

2

1

, where N is the number of pixels in R.In Matlab, I would first find the row and column arrays for each pixel in the region by 

>> [r,c] = find(cc == 1) % for region 1, for example.

>>cMean = mean(c); 

 

% To find the column mean.
>>cNorm = c-cMean;



% Subtracts the mean from the whole array

>>cNormSquared= (cNorm).^2;

% Squares the whole array at once
>>sumSquared = sum(cNormSquared);
% Finds the sum of the given array
>>a(1,1) = sumSquared / N;



Look, Mom, no hands…I mean, loops. 
You can modify these as needed to get the other array elements.
<<help eig  % to get info about eigenvalues and eigenvectors. 

Also, if you were so inclined as to want to give the direction of the principal axes, recall that x and y in math translate to c and –r, respectively in Matlab.

… about cool matrix math: 

You can calculate the whole covariance matrix in one fell swoop. Let M = [cNorm, rNorm] be an N x 2 matrix, with rNorm and cNorm as above. Can you figure out an extremely simple expression involving M that yields the covariance matrix? (We’ll use the matrix form later in the course.) Using that in your code and describing it in the report would impress me. 
… about impressing me to earn a 10. 

Really, there are lots of ways to impress me on this lab. Matrix math is cool and so are insights/theory related to how you are classifying the regions into the 4 classes. 

… and about circularity
The |P|2/A formula is a bit easier to code. You can calculate perimeter easily if you loop over the output of the bwtraceboundary() method. Actually, for this |P|2/A formula, you must use bwtraceboundary and not bwperim so that you get the perimeter pixels in order (with adjacent perimeter pixel occupying neighboring rows in the output). 

I confess to looping over each pair of points on the perimeter to tell whether that segment should contribute 1 or sqrt(2), but previous students have found that it’s possible even to vectorize that operation as well to avoid any loops. (Up for the challenge?) The radial distance measure wasn’t too bad either using “tricks” like we did to avoid using loops for the covariance. 
_1227687380.unknown

