CSSE463 Image Recognition 		Lab 1:	Intro to MATLAB and Image Processing				 	
Outcomes:
1. Familiarity with MATLAB IDE.
2. Familiarity with arrays.
3. Ability to read, save, and view images.
3. Create a personal QuickReference guide to MATLAB that you can use in the future.

Grading checklist of deliverables:
1. Answers to the questions in red:
a. ____/5 pts: 3D arrays
b. ____/5 pts Matlab for the first column of a 2D-array.
c. ____/5 pts Matlab for upper-right-hand corner of a 7x10 array.
d. ____/5 pts: replace values in range with -1 using find
e. ____/10 pts: paragraph about Matlab subscripts
f. ____/10 pts: paragraph about converting color to grayscale images.
2. Images you were told to save:
a. ____/5 pts Orig img
b. ____/5 pts Grayscale img	
3. Your Matlab QuickReference guide section
a. ____/10 pts
4. Following directions:
a. ____/8 pts: All answers and images included inline in a single document
labeled as yourname- Lab 1.docx or yourname-Lab1.pdf.
b. ____/2 pts: submitted to the dropbox for Lab 1.
c. ____/10 pts: writing, formatting, and professionalism

Total: ____/80 pts

Step-by-step Directions:

I. Install/upgrade MATLAB to at least the 2018a version
Note: you need to be on campus or connected to the VPN to use MATLAB, since it requires a license key.

Install MATLAB if you don’t have it.
1. Note 1: any old version of MATLAB will work for the first 4 weeks of the course, so don’t stress out. But why not upgrade now while you have time?
2. Note: if you have an old version of MATLAB (pre-2017), uninstall it (and blow away the MATLAB folder with any remaining files that are left when the uninstaller completes), reboot, and then do the following.
3. Install from where? Get 2018a or newer online for Windows, Mac, or Linux. You’ll need to make an account at Mathworks and get the license key from DFS to do this. (Mac users: mount DFS from the finder by choosing Go > Connect to Server… > smb://software.) I chose this option because the deep learning toolbox is maturing quickly.
4. [bookmark: _GoBack]Install MATLAB itself and the following toolboxes (note: it required ~13 GB for the mac install of all of this) computer vision, image acquisition, image processing, deep learning, optimization, parallel computing, and statistics/machine learning. You can check the version of your toolboxes by starting to do Help > Check for Updates. (details)

II. Familiarity with MATLAB IDE (5 min)
Start MATLAB on your laptop. Experiment with the environment for a few minutes to get comfortable with it. MATLAB includes a command-line interpreter, a help system, a scripting system, and a debugger (and more), but for now, we want to get familiar with the interpreter.

Note: you can change the startup directory by following the comments below (taken from MATLAB help, searching for “default directory”).

III. Change the Startup Folder

You should start MATLAB in a folder other than the default, like somewhere in My Documents, or wherever you are storing your work for this course.

Windows only: Right-click the MATLAB shortcut icon and select Properties. The Properties dialog box for MATLAB.exe opens to the Shortcut page. Enter the new startup directory in the Start in field and click OK. It will update the next time you start MATLAB using that shortcut icon. You can make multiple shortcuts to start MATLAB, each with its own startup folder, and with each startup folder having different startup options.

Alternative that works on all platforms: In the current startup folder (e.g., C:\Program Files\MATLAB\R2012a\bin), create a startup.m file which includes the cd function to change to the new directory (like cd /Users/boutell/Documents/Courses/CSSE463/MyMatlabProjects).

IV. Prepare to create a Quick Reference Guide

Create an empty text or other file. As you work through this tutorial, copy into it anything that you want to remember for later. For example, it could be a list of functions, with sample usage as you deem appropriate for yourself. (And if you are the rare student who knows all of this MATLAB already and don’t see the need to keep a reference guide, you should learn some advanced functions related to this lab and write about them in your guide instead.)

For the questions you are to answer and images you are to save, please create a Word document named yourname- Lab 1.docx. Please save all images inline in the text, so they are easy to find. (Requiring Word may seem picky, but it’s the easiest way for me to have access to your original images as well, since I can just unzip the Word doc to grab them.) [Alternatively, if you don’t want to use Word, you could create a pdf using another tool, but still have images inline. You’ll also need to submit images separately.]

 V. 1D Arrays (5 min)
I will use >> to mean something you should type.
Everything after the % character is a comment.

>>A = [3 6 8 9 10]; 		%to create a 1x5 matrix called A.

>>A 	(with no semicolon) to display the matrix. Omitting the semicolon on any expression displays the value of the expression.

>>B = 2*A 		%to create a matrix B, with values twice as big as A’s
>>C = A + B		%to find the sum.
>> D = 1:10 		%What does this do? Then guess what E=1:2:10 does.
Note how easily MATLAB does array and matrix calculations.

Type A(1), A(1:3), and A([1,3,5]) to extract parts of array A. These can be saved as other variables, e.g., X = A(4). Note three things:
MATLAB uses 1-based subscripts. You have to forget your Java and C training in this course.
MATLAB has flexible subscripting. You can even use another array as a subscript (can you come up with an example to use here?)
MATLAB uses (), not [] to contain subscripts. It uses [] to initialize arrays.

VI. 2D Arrays (5 min)
>>A = [1 2 3; 4 5 6; 7 8 9] 	%to create a 3x3 matrix called A.
>>B = A 				%to create a copy of A,
>>C = A + B			%to sum them
>>A(2,3) 				%What does this do?
>>A(1:2, 2) 			%What does this do?
>>A(3,:) 				%What does this do?

VII. 3D arrays (5 min)

3D arrays are a pain to type by hand. We use multiple statements in each of which one 2D “slice” of the array is assigned.
>> clear A;			 % to remove its contents
>> A(:,:,1) = [1 2; 3 4]
>> A(:,:,2) = [5 6; 7 8]
>> A(:,:,3) = [9 10; 11 12]
>> B = A(:,:,2)

Why will dealing with 3D arrays be important in this class?

Write a MATLAB expression to refer to the first column of a 2D-array.

Write a MATLAB expression to refer to the upper-right-hand pixel of a 7 x 10 array. Note we always give dimensions of 2D arrays as (#rows) x (#cols).

VIII. MATLAB syntax for old and new things

MATLAB can operate on whole arrays at a time, so you should avoid loops whenever you can. You can even apply conditions to a whole image in one step. Say we wanted to replace all negative values in an array with 0.

A = [5 -4 7 -2 10];
idx = find(A < 0) 		% What’s the significance of the values in idx?
A(idx) = 0			% Wow!
Note: We can combine these:
A(find(A < 0)) = 0

In MATLAB, we use &, |, ~ for and, or, and not, respectively.

Write a MATLAB expression to replace all values in a matrix A between 10 and 20 inclusive with the value -1.

You can create a matrix of all zeroes:
B = zeros(4,2)			% This will be helpful in the future

In your own words, write a paragraph about MATLAB concepts related to subscripting. Include find, zeros, slicing, and flexible subscripting.

Of course, MATLAB lets you use decisions and loops when needed:
if x > 10
	x = x + 1;		% no ++ or even += in MATLAB
else
	x = x – 1;
end

j=1;
for i = 1:10
	j = j*i;			% What’d we just compute?
end

However, nested loops are slow in MATLAB. Use find and matrix ops whenever possible when operating on images.

IX. Loading and saving images (5 min)

There are two ways to move around in the file system.
1. Use the browser (the top-left window).
2. Use the command-line interpreter. It is just like Linux: pwd gives you the present working directory, ls displays the files and folders there, cd moves you around (for example, cd ../ to move up one level).

Create an image folder in your current directory.

Move a photo of your choosing into the image directory. One with a few bright colors will be more fun to work with. Please cite the source (if online, the URL where you found it; if a personal photo, just say so) in your report.

Load the image by using, for example:

>> img = imread(‘image\foo.jpg’);
Note you can get help for any MATLAB function by typing help <function> or using the help browser (F1).

Filenames are enclosed in single quotes.
Folders are specified using backslashes.

>>img 			%to see the pixel values.
>> whos 		%to see its size. What are the 3 dimensions of your image?
>>imshow(img)	%to see the image.
Save the image using
>> imwrite(img, ‘<filename>.png’);
Tiff is uncompressed, and so would lead to big files. Jpg is lossy compression, so we get artifacts. Png is a happy medium: its compression is less aggressive than jpg, but is lossless.

XI Exploring Images (5 min)
There are two tools for exploring images and pixel values: imtool and imshow. Try them both:

>>imtool(img)
Experiment with some of the menu options here. Try Tools/PixelRegion.
Notice the info displayed at the bottom of the image

>>imshow(img) 	And play around with the settings.

XII Manipulating Image Colors (15 min)

We’ll now experiment with looking at single bands of the image.

>> red = img(:,:,1);
>> imtool(red);

Now isolate the blue and green bands of the image as well. Which looks the most like how you’d expect the corresponding grayscale (“black-and-white”) photo to look?

A quick and dirty approximation of grayscale is found by averaging the R, G, and B values.

Note: you need to convert from byte (the default for images) to double to “do arithmetic” on the images.
So don’t use >> avg = (red + green +blue)/3;
Instead, use >> avg = uint8((double(red) + double(green) + double(blue))/3);

Notes about uint8:
bar = uint8(foo); 	%converts foo to a byte for display or to save.
%This also “clips” the values to [0,255] (mapping anything too
% big, like 372, down to 255, and anything negative to 0)
% If you don’t account for this, you can get in big trouble!

>>gray = rgb2gray(img) 	creates a 2D (grayscale) image from the color image. Compare it visually to each of the single bands and the average grayscale conversion formula above. rgb2gray uses a more realistic approximation of grayscale is given by the formula

gray = 0.3R + 0.59G + 0.11B.

(Note: this formula gives a more realistic approximation, but for some images, it may yield results that are less visually appealing than one of the other formulas. For example, consider an image with a lot of a single color and little of the others.)

>> imtool(gray)
In imtool, try Tools/Adjust contrast and Tools/Colormap

Save any grayscale image you created.

Summarize in a paragraph what you have learned about converting color to grayscale images.

Finally, copy the contents of your MATLAB quick reference back into the end of your lab so you can submit one file.

Now go back to the grading checklist and make sure you have done everything listed there, then submit it following those directions.
