CSSE463: Image Recognition

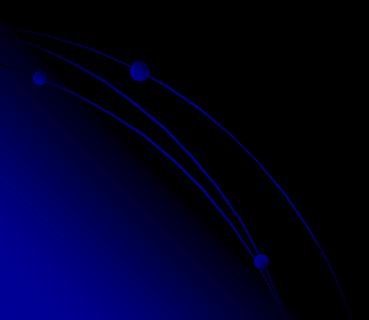
Project Teams:

Beating Captchas: Whiteboard Scribbles: ???: Yelp Restaurant: SubwayCam: OCR with OpenCV: Pokemon Type Rec: David H, Dan E, Joe F, Matt B Gunnar H, Andrew T, Sean C, Noah M Hazen H, Alex T, Donnie W, Andy Y Nathan C, Faye L, Alex L, Addison W Chris B, Jonathan J, Kassandra S, Andy M Misato M, Bo P, Min S, Zhihao X Sam B, Tai E, Orion M, Josh M

Day 20

Term project next steps

- From the Lit Review specification.
 - Goal: Review what others have done.
 Don't re-invent the wheel.
 - Read papers!
 - Summarize papers
 - Due next Friday (Extensions available on request)


CSSE463: Image Recognition

- Today: Lab for sunset detector
- Next week:
 - Monday: Midterm Exam
 - Tuesday: sunset detector lab (due Weds. 11:00 pm)
 - Thursday: k-means clustering
 - Friday: lab 6 (k-means)

Exam prep

Bright blue roadmap sheet
Exam review slides (courtesy reminder)

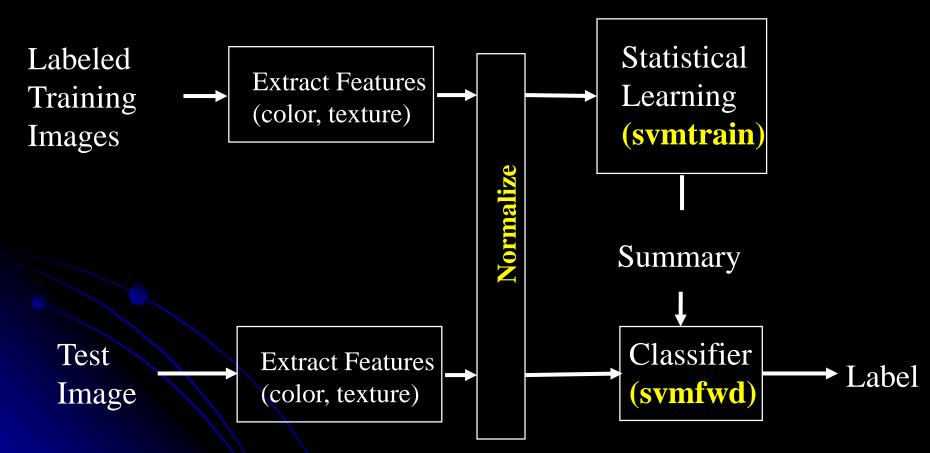
Last words on neural nets/SVM

How does svmfwd compute y1?

y1 is just the weighted sum of contributions of individual support vectors: d = data dimension, e.g., 294, σ = kernel width.

$$y1 = \sum_{i=1}^{numSupVecs} \left(svcoeff_i * e^{(-1/d\sigma)* \|x - sv_i\|^2} \right) + bias$$

numSupVecs, svcoeff (alpha) and bias are learned during training. Note: looking at which of your training examples are support vectors can be revealing! (Keep in mind for sunset detector and term project)


- Much easier computation than training
- Was easy to implement on a device without MATLAB (ea smartphone)

SVMs vs. Neural Nets

• SVM:

- Training can take a *long* time with large data sets due to choosing parameters...
- But the classification runtime and space are *O(sd)*, where *s* is the number of support vectors, and d is the dimensionality of the feature vectors.
- In the worst case, s = size of whole training set (like nearest neighbor)
 - Overfitting is occurring: can use with accuracy to choose classifier
- But no worse than implementing a neural net with s perceptrons in the hidden layer.
- Empirically shown to have good generalizability even with relatively-small training sets and no domain knowledge.
- Neural networks:
 - can tune architecture. Lots of parameters! Q3 on old SVM quiz

Common model of learning machines

Sunset Process

- Loop over 4 folders of images
 - Extract features
- Normalize
- Split into train and test and label
- Save
- Loop over kernel params
 - Train
 - Test
 - Record accuracy, #sup vec

- For SVM with param giving best accuracy,
 - Generate ROC curve
 - Find good images
 - Do extension
- I suggest writing as you go