CSSE463: Image Recognition Day 17

See schedule for reminders

Neural networks

- "Biologically inspired" model of computation
- Can model arbitrary real-valued functions for classification and association between patterns
- Discriminative model
 - Models decision boundary directly
 - Less memory than nearest neighbor
 - Fast!
- Can be parallelized easily for large problems
- We will take a practical approach to classification

Perceptron model

- Computational model of a single neuron
 - Inputs
 - Outputs
 - Function and threshold

 Will be connected to form a complete network

Example: Modeling logic gates

- We'll do OR together.
 - Inputs: $x_1 = \{0,1\}, x_2 = \{0,1\}$
 - We need to pick weights w_i and x_0 (= -t, the threshold) such that it outputs 0 or 1 appropriately
- Quiz: You do AND, NOT, and XOR.
- Note that a single perceptron is limited in what it can classify. What is the limitation?

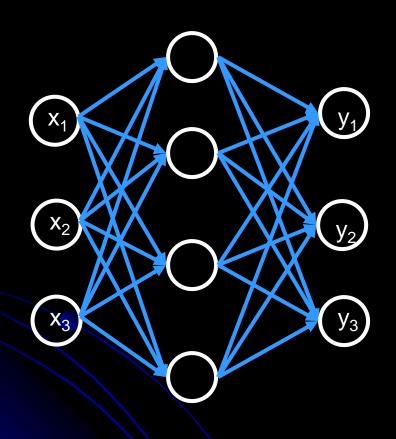
Perceptron training

- Each misclassified sample is used to change the weight "a little bit" so that the classification is better the next time.
- Consider inputs in form x = [x₁, x₂, ... x_n]
- Target label is y = {+1,-1}

<u>Algorithm (Hebbian Learning)</u>

- Randomize weights
- Loop until converge
 - If wx + b > 0 and y is -1:
 - $w_i = \varepsilon^* x_i$ for all i
 - **b** -= εγ
 - else if wx + b < 0 and y is +1:</p>
 - $w_i += \varepsilon^* x_i$ for all i
 - b += εy
 - Else (it's classified correctly, do nothing)
 - ε is the learning rate (a parameter that can be tuned).

Multilayer feedforward neural nets



- Many perceptrons
- Organized into layers
 - Input (sensory) layer
 - Hidden layer(s): 2 proven sufficient to model any arbitrary function
 - Output (classification) layer
- Powerful!
- Calculates functions of input, maps to output layers

Sensory (HSV)

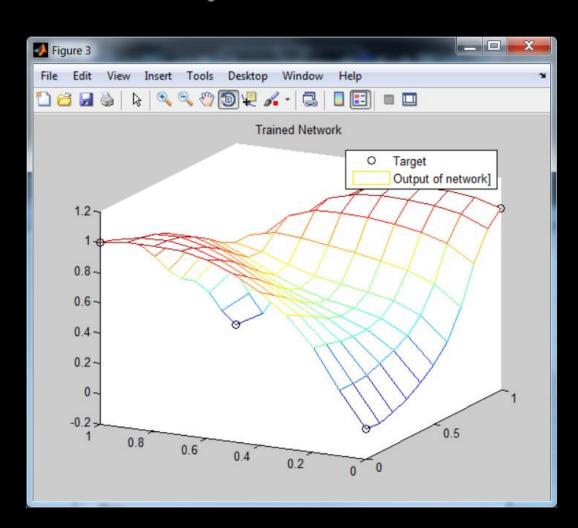
Hidden

Classification (functions) (apple/orange/banana)

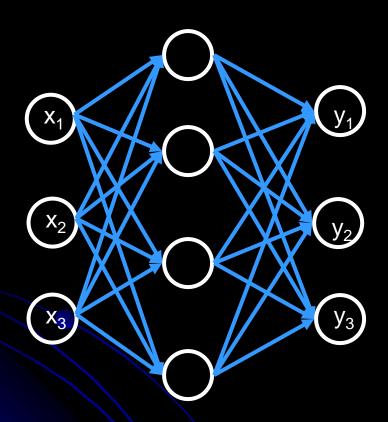
Example

XOR example

- 2 inputs
- 1 hidden layer of 5 neurons
- 1 output



Backpropagation algorithm



a. Calculate output (feedforward)

Initialize all weights randomly

- For each labeled example:
 - Calculate output using current network
 - Update weights across network, from output to input, using Hebbian learning
- Iterate until convergence
 - Epsilon decreases at every iteration
- Matlab does this for you. [©]
- matlabNeuralNetDemo.m

b. Update weights (feedback)

Parameters

- Most networks are reasonably robust with respect to learning rate and how weights are initialized
- However, figuring out how to
 - normalize your input, and
 - determine the architecture of your net
- is a black art. You might need to experiment.
 One hint:
 - Re-run network with different initial weights and different architectures, and test performance each time on a validation set. Pick best.