CSSE463: Image Recognition Day 3

Announcements/reminders:

- Lab 1 should have been turned in yesterday (due now if use a late day). 2 early, 2 late, all others on time. ⁽³⁾
- Tomorrow: Lab 2 on color images. Bring laptop again and sit next to your partner.
- If you see examples of Img Rec in life, please send to me!
- Last class?
- Today:
 - Introduce Fruit Finder, due next Friday.
 - Lots of helpful hints in Matlab.
 - Connected components and morphology
- Next week: Edge features
- Questions?

Spatial component of color

- Break image into parts and describe each one
 - Can describe each part with moments or histograms
- Regular grid
 - Pros?
 - Cons?
- Image regions
 - Pros?
 - Cons?

Additional reading

Color gamuts

http://en.wikipedia.org/wiki/Gamut

Color coherence vectors

- Extension of color histograms within local neighborhoods
- Used in:
 - A. Vailaya, H-J Zhang, and A. Jain. On image classification: City images vs.
 Jandscapes. Pattern Recognition 31:1921-1936, Dec 1998.

Defined in:

 G Pass, R Zabih, and J Miller. Comparing images using color coherence vectors. 4th ACM Conf. Multimedia, pp 65-73, Boston, 1996.

Project 1: Counting Fruit How many apples? bananas? oranges?

Why the fruit-finder?

- Crash-course in using and applying Matlab
 - For this reason, I will direct you to some useful functions, but will not give details of all of them
- Practice feature extraction
- Practice writing a conference-paper style report
 - Formal and professional!
 - Use style similar to ICME sunset paper (Abstract, Introduction, Process, Results, ...)
 - Lots of details in specification and rubric.
- Warning: The project grade is determined by the paper quality: even a finder that gets 100% accuracy can earn a low grade.

Fruit-finding technique

Observe

• What numbers define a banana's "yellow"?

(using imtool pixel zoom)

Model

- Can you differentiate between yellow and orange? Orange and red? (Decisions)
- Note: this isn't using a classifier yet; just our best guess at handtuned boundaries
- Classify pixels using your model (today's how-to)
- "Clean up" the results
 - Mathematical morphology: today's discussion!
- Write up your results in a professional report (as you go)

Region processing

Binary image analysis

- Today, we'll only consider binary images composed of *foreground* and *background* regions
 - Example: apple and non-apple
 - Use find to create a mask of which pixels belong to each

Matlab How-to create a mask

- Lots of "Random" tidbits that I used in my solution:
 - zeros
 - size
 - find

Modifying the mask requires us to define which pixels are neighbors

Neighborhoods

Do we consider diagonals or not?

4-neighborhood of pixel p:
Consists of pixels in the 4 primary compass directions from p.
8-neighborhood of pixel p:
Adds 4 pixels in the 4 secondary compass directions from p.

Morphological operations (Sonka, ch 13)

- Morphology = form and structure (shape)
- For binary images
 - Done via a structuring element (usually a rectangle or circle)

Basic operations:
Dilation, erosion, closing, opening

Dilation

- Given a structuring element, adds points in the union of the structuring element and the mask
- Intuition: Adds background pixels adjacent to the boundary of the foreground region to the foreground.

• Def, for image X and structuring element B:

$$X \oplus B = \left\{ p \in \varepsilon^2 : p = x + b, x \in X \text{ and } b \in B \right\}$$

Dilation in action

Strel = 2x1, centered on dot

Dilation

Matlab: imdilate(bw, structureElt)

- Typically want symmetric structuring elements
- structureElt (for 8 neighborhood) found by:
 - structureElt = strel(`square', 3); % for erosion
 using 3x3 neighborhood
- structureElt (for 4 neighborhood) found by:
 - structureElt = strel([0 1 0; 1 1 1; 0 1 0]);
- help strellists 11 others

Demo for intuition: Enlarges a region

• Def:

$$X \oplus B = \{ p \in \varepsilon^2 : p = x + b, x \in X \text{ and } b \in B \}$$

Erosion

Removes all pixels on the boundary
Matlab: imerode(bw, structureElt)

$$X\Theta B = \left\{ p \in \varepsilon^2 : p = x + b \in X \ \forall b \in B \right\}$$

Closing and Opening

Closing (imclose)

- Dilate, then erode
- Fills internal holes in a region, while maintaining approximate pixel count
- Eliminates inlets on the boundary
- Opening (imopen)
 - erode, then dilate
 - Removes small regions
 - Eliminates peninsulas on the boundary
- To make dilation more aggressive,
 - Dilate n times, then erode n times.
 - Or, use a larger structuring element
 - Example: compare *dilating twice using a 3x3 square* with dilating *once using a 5x5 square*.

Connected Components

- Goal: to label groups of connected pixels.
 - Assign each block of foreground pixels a unique integer
 - 4-connectivity vs. 8-connectivity matters
- Matlab help: search for connected components, and use bwlabel function
- Demo
- I may have you devise an algorithm to do this as part of week 3 take-home test.

Lab 2

- What format? See nice lab 1
- You will work with a partner for each lab
 - Can stay same or change
- I have posted a simpler 10-point grading rubric at the top of each lab
- Please ask questions and complete as much as you can in class
- Each lab is due the following Weds at the same time as the start of class
- Start now!