CSSE463: Image Recognition

- Announcements/reminders:
- Lab 1 should have been turned in yesterday (due now if use a late day). 2 early, 2 late, all others on time. ()
- Tomorrow: Lab 2 on color images. Bring laptop again and sit next to your partner.
- If you see examples of Img Rec in life, please send to me!
- Last class?
- Today:
- Introduce Fruit Finder, due next Friday.
- Lots of helpful hints in Matlab.
- Connected components and morphology
- Next week: Edge features
- Questions?

Spatial component of color

- Break image into parts and describe each one
- Can describe each part with moments or histograms
- Regular grid
- Pros?
- Cons?
- Image regions
- Pros?
- Cons?

Additional reading

- Color gamuts
- http://en.wikipedia.org/wiki/Gamut
- Color coherence vectors
- Extension of color histograms within local neighborhoods
- Used in:
- A. Vailaya, H-J Zhang, and A. Jain. On image classification: City images vs. landscapes. Pattern Recognition 31:1921-1936, Dec 1998.
- Defined in:
- G Pass, R Zabih, and J Miller. Comparing images using color coherence vectors. $4^{\text {th }}$ ACM Conf. Multimedia, pp 65-73, Boston, 1996.

Project 1: Counting Fruit

 - How many apples? bananas? oranges?

Why the fruit-finder?

- Crash-course in using and applying Matlab
- For this reason, I will direct you to some useful functions, but will not give details of all of them
- Practice feature extraction
- Practice writing a conference-paper style report
- Formal and professional!
- Use style similar to ICME sunset paper (Abstract, Introduction, Process, Results, ...)
- Lots of details in specification and rubric.
- Warning: The project grade is determined by the paper quality: even a finder that gets 100% accuracy can earn a low grade.

Fruit-finding technique

- Observe
- What numbers define a banana's "yellow"? (using imtool pixel zoom)
- Model
- Can you differentiate between yellow and orange? Orange and red? (Decisions)
- Note: this isn't using a classifier yet; just our best guess at handtuned boundaries
- Classify pixels using your model (today's how-to)
- "Clean up" the results
- Mathematical morphology: today's discussion!
- Write up your results in a professional report (as you go)

Region processing

- Binary image analysis
- Today, we'll only consider binary images composed of foreground and background regions
- Example: apple and non-apple
- Use find to create a mask of which pixels belong to each

Matlab How-to create a mask

- Lots of "Random" tidbits that I used in my solution:
- zeros
- size
- find

Modifying the mask requires us to define which pixels are neighbors

Neighborhoods

- Do we consider diagonals or not?
- 4-neighborhood of pixel p:
- Consists of pixels in the 4 primary compass directions from p.
- 8-neighborhood of pixel p:
- Adds 4 pixels in the 4 secondary compass directions from p.

Morphological operations (Sonka, ch 13)

- Morphology = form and structure (shape)
- For binary images
- Done via a structuring element (usually a rectangle or circle)
- Basic operations:
- Dilation, erosion, closing, opening

Dilation

- Given a structuring element, adds points in the union of the structuring element and the mask
- Intuition: Adds background pixels adjacent to the boundary of the foreground region to the foreground.
- Def, for image X and structuring element B :

$$
X \oplus B=\left\{p \in \varepsilon^{2}: p=x+b, x \in X \text { and } b \in B\right\}
$$

Dilation in action

Strel $=2 \times 1$, centered on dot

Dilation

- Matlab: imdilate (bw, structureElt)
- Typically want symmetric structuring elements
- structureElt (for 8 neighborhood) found by:
- structureElt = strel ('square' , 3) ; \% for erosion using 3×3 neighborhood
- structureEIt (for 4 neighborhood) found by:
- structureElt $=$ strel ([0 1 0; 1 1 1; 0 1 0]);
- help stre1 lists 11 others
- Demo for intuition: Enlarges a region
- Def:

$$
X \oplus B=\left\{p \in \varepsilon^{2}: p=x+b, x \in X \text { and } b \in B\right\}
$$

Erosion

- Removes all pixels on the boundary
- Matlab: imerode(bw, structureElt)

$$
X \Theta B=\left\{p \in \varepsilon^{2}: p=x+b \in X \forall b \in B\right\}
$$

Closing and Opening

- Closing (imclose)
- Dilate, then erode
- Fills internal holes in a region, while maintaining approximate pixel count
- Eliminates inlets on the boundary
- Opening (imopen)
- erode, then dilate
- Removes small regions
- Eliminates peninsulas on the boundary
- To make dilation more aggressive,
- Dilate n times, then erode n times.
- Or, use a larger structuring element
- Example: compare dilating twice using a 3×3 square with dilating once using a 5×5 square.

Connected Components

- Goal: to label groups of connected pixels.
- Assign each block of foreground pixels a unique integer
- 4-connectivity vs. 8-connectivity matters
- Matlab help: search for connected components, and use bwlabel function
- Demo
- I may have you devise an algorithm to do this as part of week 3 take-home test.

Lab 2

- What format? See nice lab 1
- You will work with a partner for each lab
- Can stay same or change
- I have posted a simpler 10-point grading rubric at the top of each lab
- Please ask questions and complete as much as you can in class
- Each lab is due the following Weds at the same time as the start of class
- Start now!

