CSSE463: Image Recognition

- Roll call
- Announcements:
- Moodle has drop box for Lab 1
- Next class: lots more Matlab how-to (bring your laptop)
- Questions?
- Today: Color and color features
- Do questions 1-2 about ICME sunset paper now

Pixels to Predicates

1. Extract features from images

2. Use machine learning to cluster and classify

$$
x=\left(\begin{array}{c}
0.4561 \\
0.1928 \\
\ldots \\
0.2756
\end{array}\right)
$$

Color
Texture
Shape
Edges
Motion

Principal components
Neural networks
Support vector machines
Gaussian models

Basics of Color Images

- A color image is made of red, green, and blue bands.
- Additive color
- Colors formed by adding primaries to black
- Comments from graphics?
- RGB mimics retinal cones in eye.
- RGB used in sensors and displays
- Why "16M colors"?
- Why 32 bit?

Source: Wikipedia

Basics of Color Images

- Each band is a 2D matrix
- Each R, G, or B value typically stored in a byte.
- Range of values?
- The $4^{\text {th }}$ byte is typically left empty
- Allows for quicker indexing, because of alignment
- Reserved for transparency (in graphics)
- How much storage, in KB , is required for a 128x192 thumbnail color image (uncompressed, including unused $4^{\text {th }}$ bytes)?

http://abstrusegoose.com/221

We can extract different types of color features (statistics) from images

- 1. Color histograms
-2. Color moments
- 3. Color coherence vectors

Related considerations:

- Some color spaces "work better"
- Spatial components can help

Color histograms

- Gives distribution of colors
- Sample to left is for intensities only
- Pros
- Quantizes data, but still keeps lots of info
- Cons
- How to compare two images?
- Spatial info gone
- Histogram intersection (Swain and Ballard)

Color moments

$$
\begin{aligned}
& m_{1}=116.3 \\
& m_{2}=1152.9 \\
& m_{3}=-70078 \\
& m_{4}=7.4 \text { million }
\end{aligned}
$$

- Central moments are statistics
- $1^{\text {st }}$ order $=$ mean
- $2^{\text {nd }}$ order $=$ variance
- $3^{\text {rd }}$ order $=$ skew
- $4^{\text {th }}$ order $=$ kurtosis
- Some have used even higher order moments, but less intuitive
$\mathrm{m}_{4}=12.6$ million \bullet For color images, take moments of each band

RGB color space

- Red/green/blue
- Rectangular axes
- Simple, but non-intuitive

HSV color space

- Hue-saturation-value (HSV) cone
- also called HSI (intensity)
- Intuitive
- H: more than "what color": it's wavelength; position on the spectrum!
- S: how vibrant?
- V: how light or dark
- "Distance" between colors
- Must handle wraparound of hue angle correctly ($0=2 \pi$)
- Matlab has method to convert from rgb to hsv, can find formula online.

Interactive HSV color picker

- http://www.colorpicker.com/

Other color spaces

- LST (Ohta) ${ }^{1}$
- $L=$ luminance: $L=(R+G+B) / s q r t(3)$
- S and T are chroma bands.
- S: red vs. blue: $S=(R-B) / s q r t(2)$
- T: green vs. magenta: $T=(R-2 G+B) / \operatorname{sqrt}(6)$
- These 3 are the principal components of the RGB space (PCA and eigenvectors later in course)
- Slightly less intuitive than HSV
- No problem with wraparound
- Others
- YIQ (TV signals), QUV, Lab, LUV
- http://www.scarse.org/docs/color fag.html\#graybw

Spatial component of color

- Break image into parts and describe each one
- Can describe each part with moments or histograms
- Regular grid
- Pros?
- Cons?
- Image regions
- Pros?
- Cons?

Additional reading

- Color gamuts
- http://en.wikipedia.org/wiki/Gamut
- Color coherence vectors
- Extension of color histograms within local neighborhoods
- Used in:
- A. Vailaya, H-J Zhang, and A. Jain. On image classification: City images vs. landscapes. Pattern Recognition 31:1921-1936, Dec 1998.
- Defined in:
- G Pass, R Zabih, and J Miller. Comparing images using color coherence vectors. $4^{\text {th }}$ ACM Conf. Multimedia, pp 65-73, Boston, 1996.

