CSSE463: Image Recognition

- Today: Bayesian classifiers
- Tomorrow: project meetings.
- Questions?

Bayesian classifiers

- Use training data
- Assume that you know probabilities of each feature.
- If 2 classes:
- Classes ω_{1} and ω_{2}
- Say, circles vs. non-circles
- A single feature, x
- Both classes equally likely
- Both types of errors equally bad
- Where should we set the threshold between classes? Here?
- Where in graph are 2 types of errors?

What if we have prior information?

- Bayesian probabilities say that if we only expect 10% of the objects to be circles, that should affect our classification

Bayesian classifier in general

- Bayes rule:
- Verify with example
- For classifiers:
- $\mathrm{x}=$ feature(s)

$$
\begin{aligned}
& p(a \mid b)=\frac{p(b \mid a) p(a)}{p(b)} \\
& p\left(\omega_{i} \mid x\right)=\frac{p(x \mid \omega N p(}{p(x)}
\end{aligned}
$$

- $\omega_{\mathrm{i}}=$ class
- $P(\omega \mid x)=$ posterior probability
- $P(\omega)=$ prior
- $\mathrm{P}(\mathrm{x})=$ unconditional probability
- Find best class by maximum a posteriori (MAP) priniciple. Find class ithat maximizes $P\left(\omega_{i} \mid x\right)$.
- Denominator doesn't affect calculations
- Example:
- indoor/outdoor classification

Bayes rule is used in prediction of disease

http://www.youtube.com/watch?v=D8VZqxcu010
Can you verify the approximation they found?

Indoor vs. outdoor classification

- I can use low-level image info (color, texture, etc)
- But there's another source of really helpful info!

Camera Metadata Distributions

Flash

Scene Brightness

Why we need Bayes Rule

Problem:

We know conditional probabilities like P (flash was on | indoor)

We want to find conditional probabilities like
P(indoor | flash was on, exp time $=0.017$, sd=8 ft, SVM output)

Let $\omega=$ class of image, and $\mathrm{x}=$ all the evidence. More generally, we know $\mathrm{P}(\mathrm{x} \mid \omega)$ from the training set (why?) But we want $P(\omega \mid x)$

$$
p\left(\omega_{i} \mid x\right)=\frac{p\left(x \mid \omega_{i}\right) p\left(\omega_{i}\right)}{p(x)}
$$

Using Bayes Rule $P(\omega \mid x)=P(x \mid \omega) P(\omega) / P(x)$

The denominator is constant for an image, so $\mathrm{P}(\omega \mid \mathrm{x})=\alpha \mathrm{P}(\mathrm{x} \mid \omega) \mathrm{P}(\omega)$

Using Bayes Rule
 $P(\omega \mid x)=P(x \mid \omega) P(\omega) / P(x)$

The denominator is constant for an image, so
$\mathrm{P}(\omega \mid \mathrm{x})=\alpha \mathrm{P}(\mathrm{x} \mid \omega) \mathrm{P}(\omega)$

We have two types of features, from image metadata (M) and from low-level features, like color (L)
Conditional independence means $\mathrm{P}(\mathrm{x} \mid \omega)=$ $\mathrm{P}(\mathrm{M} \mid \omega) \mathrm{P}(\mathrm{L} \mid \omega)$

$$
P(\omega \mid X)=\alpha P(M \mid \omega) P(\text { 니 } \omega) P(\omega)
$$

From histograms From SVM
Priors
(initial bias)

Bayesian network

- Efficient way to encode conditional probability distributions and calculate marginals
- Use for classification by having the classification node at the root
- Examples
- Indoor-outdoor classification
- Automatic image orientation detection

Indoor vs. outdoor classification

Each edge in the graph has an associated matrix of conditional probabilities

Effects of Image Capture Context

Recall for a class C is fraction of C classified correctly

Orientation detection

- See IEEE TPAMI paper
- Hardcopy or posted
- Also uses single-feature Bayesian classifier (answer to \#1-4)
- Keys:
- 4-class problem (North, South, East, West)
- Priors really helped here!
- You should be able to understand the two papers (both posted)

