
CSSE463: Image Recognition Day 26

 This week
 Today: Finding lines and circles using the Hough

transform (Sonka 6.26)

 Please fill out ANGEL evaluation of Sunset partner
using "Term Project Partner Evaluation"

 Next class: Applications of PCA

 Sunday night: Project plans and preliminary work due.
See rubric

 Questions?

Finding lines in real images

 Input: set of edge points

 Output: the equation of

a line containing them

 Methods:

 Least-squares (if you

know which points

belong to the line…)

 Hough transform (today)

Hough transform

 Idea (Sonka 6.2.6; Forsyth and Ponce, ch 15):

 Represent a line using parameters

 Each edge point in the image casts a vote for

all lines of which it could be part.

 Only the true line receives lots of votes

Parametric Equation of a Line

 Represent a line using 2 parameters

 y = mx + b?
 Problem?

 Ax + By + C = 0?
 3 parameters; but A, B, and C are related…we only

need 2

 r and q

 r is distance from line to origin

 Q is the angle the distance segment makes with x-
axis

 x cosq + y sinq = r

 Q1

Voting

 Each point in image votes for all lines of

which it could be part.

 Only “true” line receives lots of votes.

 Quiz question: show (4,4), (2,2), and (0,0)

voting for a line in y = mx+b space (for

simplicity)

Q2-3

Perfect line

 Notice sharp peak in voting space

 (next 3 images from Forsyth and Ponce, ch 15)

Q4

Approximate line

 Notice the broader peak. Can we detect it?

 Could smooth or use a coarser quantization?

 Accumulator array: bin size? Range?

Q5

Random noise

 Votes spead all over the place: no line

 Too much noise creates “phantom lines”

 Smoothing can sometimes help

Q6

Limitations

 Finding the right grid size in parameter

space may be tricky

 Trial and error

Matlab

 Run an edge detector first to find points

that are voting

 [H, theta, rho] = hough(edgeImg);

 peaks = houghpeaks(H,nPeaks);

 This works for lines only

Another demo

http://www.rob.cs.tu-bs.de/content/04-

teaching/06-interactive/HNF.html

http://www.rob.cs.tu-bs.de/content/04-teaching/06-interactive/HNF.html
http://www.rob.cs.tu-bs.de/content/04-teaching/06-interactive/HNF.html
http://www.rob.cs.tu-bs.de/content/04-teaching/06-interactive/HNF.html
http://www.rob.cs.tu-bs.de/content/04-teaching/06-interactive/HNF.html
http://www.rob.cs.tu-bs.de/content/04-teaching/06-interactive/HNF.html
http://www.rob.cs.tu-bs.de/content/04-teaching/06-interactive/HNF.html
http://www.rob.cs.tu-bs.de/content/04-teaching/06-interactive/HNF.html

Generalizations

 Finding circles with fixed radius…

 Finding circles with arbitrary radius…

 Finding line segments

 Finding arbitrary shapes…

 Ballard, Dana. 1981. Generalizing the Hough
transform to detect arbitrary shapes. Pattern
Recognition, 13(2):111-122.

 Dana was a long-time member of Rochester’s
computer vision group.

Q7-8

My Circle Finder

 Demo

 Wouldn’t this be a great lab? 
 Like Matlab’s hough and houghpeaks (for lines), but

from scratch

 Easier would be to find circles of fixed radius.

Reducing the number of votes

 Use the edge gradient information as well

 Only need to cast votes for centers along the

gradient

 I’ve done this; it works really well

 Use partial curves. If you had a way of

grouping relating points, you could use

curvature.

 I haven’t tried this.

