CSSE463: Image Recognition

- This week:
- K-means: a method of image segmentation
- Lab 6 on k-means tomorrow
- Sunday night: literature review due
- Project Teams:

1. All about that Money!: Payden B, Graham F, Jacob O, Sydney S
2. Rhythm Game Detector: Tianyu L, Chris O, Caio, Luan
3. IGVC Obstacle Detection: Allison C, Joe S, Gustavo R
4. Drive smarter/safer or Sudoku solver: John S, Mohammed A, Orry J, Ben P
5. Sheet Music to MIDI: Austin Uphus, Christian Schultz, Man Chi Huen
6. Wordsearch : Garrett Barnes, Eric Yuhas, Zane Geiger

- Literature review: rubric and samples.
- Questions?

An image to segment...

Segmentation

- The process of breaking an image into regions.
- Two types:
- General-purpose
- "One size fits all"
- Very difficult...
- Specialized
- Intended for a specific domain (say fruit-, circle- or skinfinding)
- Can be successful
- One to right is created using the mean-shift algorithm
- D. Comaniciu, P. Meer: Mean shift: A robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Machine Intell, 24, 603619, 2002.
- EDISON code downloadable at http://www.caip.rutgers.edu/riul/ research/robust.html

What properties can we use to segment?

- Regions homogeneous wrt. color, texture, etc.
- Adjacent regions different (else merge)
- Smooth boundaries

Approaches

1. Models

- Uses an expected shape, color, etc. (fruit- and circle-finders)
- Can use probabilities

2. Clustering

- An unsupervised machine learning technique
- No class labels used in learning!
- Groups pixels "close" to each other by some metric.
- Color distance, texture, intensity, spatial location, etc.
- Regions are then found using connected components

K-means clustering

- D= total distance
- K = \# of clusters
- x are pixels
- C_{k} is the set of pixels in cluster k
- m_{k} is the center of cluster k
- ||.|| is a distance
- Goal: given K clusters, assign each pixel to one of the clusters such that the total distance from each pixel to the center of its cluster is minimized.
- We control C, the assignment of pixels to each cluster. (We will actually do this by specifying the location of their means)

K-means clustering

- $\mathrm{K}=\#$ of clusters
- x are pixels
- C_{k} is the set of pixels in cluster k
- m_{k} is the center of cluster k
- ||.|| is a distance

Problems:

- What's K?
- How do we know which pixel belongs to each cluster?
- K-means is an answer to the second question.

K-means clustering

- Iterative process to group into k clusters.
- Algorithm (Sonka, p 403; Forsyth\&Ponce, p. 315; Shapiro, p. 282)
- Initialize K cluster means
- Repeat until convergence:
- For each pixel, find the closest mean and assign it to that cluster
- Re-compute the mean of all pixels assigned to the cluster
- Label each pixel with its current cluster
- Example on board using 2D spatial distance

K-means clustering

- We are trying to find out where the clusters are and which points are assigned to each cluster. We iteratively solve half the problem. Notice the overall structure:
- Repeat until convergence:
- Assume you know where the cluster centers are. For each pixel, find the closest mean and assign it to that cluster
- Assume you know which points belong to each cluster. Recompute the mean of all pixels assigned to the cluster
- Label each pixel with its current cluster

K-means clustering

- Pros:
- Easy to implement
- Finds local optimum (best we can hope for)
- Cons:
- The number of clusters, K, must be known in advance
- Some clusters might have 0 points
- Local optimum is not guaranteed to be global optimum
- Ideas:
- Can re-run with several initializations
- Can choose K based on observation or statistical means
- Adaptive k-means:
- split a cluster if the total distance to that cluster is too large. Do if you lose a mean along the way
- Can try to merge adjacent clusters

K-means clustering

- $\mathrm{K}=\#$ of clusters
- x are pixels
- C_{k} is the set of pixels in cluster k
- m_{k} is the center of cluster k
- ||.|| is a distance: could be 2D
distance in image or 3D Euclidean distance between colors (or combination of both)

K-means results

