
CSSE463: Image Recognition Day 18

 Upcoming schedule:

 Lightning talks shortly

 Midterm exam Monday

 Sunset detector due Wednesday

Multilayer feedforward neural nets

 Many perceptrons

 Organized into layers

 Input (sensory) layer

 Hidden layer(s): 2 proven
sufficient to model any
arbitrary function

 Output (classification)
layer

 Powerful!

 Calculates functions of
input, maps to output
layers

 Example

x1

x2

x3

y1

Sensory

(HSV)
Hidden

(functions)

Classification

(apple/orange/banana)

y2

y3

Q4

XOR example

 2 inputs

 1 hidden layer of 5

neurons

 1 output

Backpropagation algorithm

Initialize all weights randomly

 For each labeled example:

 Calculate output using current
network

 Update weights across
network, from output to input,
using Hebbian learning

 Iterate until convergence

 Epsilon decreases at every
iteration

 Matlab does this for you.

 matlabNeuralNetDemo.m

x1

x2

x3

y1

y2

y3

a. Calculate output (feedforward)

b. Update weights (feedback) R peat

Q5

Parameters

 Most networks are reasonably robust with

respect to learning rate and how weights are

initialized

 However, figuring out how to

 normalize your input

 determine the architecture of your net

 is a black art. You might need to experiment.

One hint:

 Re-run network with different initial weights and

different architectures, and test performance each

time on a validation set. Pick best.

References

 This is just the tip of the iceberg! See:
 Sonka, pp. 404-407

 Laurene Fausett. Fundamentals of Neural Networks.
Prentice Hall, 1994.
 Approachable for beginner.

 C.M. Bishop. Neural Networks for Pattern
Classification. Oxford University Press, 1995.
 Technical reference focused on the art of constructing

networks (learning rate, # of hidden layers, etc.)

 Matlab neural net help

SVMs vs. Neural Nets

 SVM: Training can be expensive
 Training can take a long time with large data sets.

Consider that you’ll want to experiment with
parameters…

 But the classification runtime and space are O(sd),
where s is the number of support vectors, and d is the
dimensionality of the feature vectors.

 In the worst case, s = size of whole training set (like
nearest neighbor)

 But no worse than implementing a neural net with s
perceptrons in the hidden layer.

 Empirically shown to have good generalizability even
with relatively-small training sets and no domain
knowledge.

 Neural networks: can tune architecture.
Q3

How does svmfwd compute y1?
y1 is just the weighted sum of contributions of individual support vectors:

 d = data dimension, e.g., 294, s = kernel width.

numSupVecs, svcoeff (alpha) and bias are learned during training.

Note: looking at which of your training examples are support vectors can be

revealing! (Keep in mind for sunset detector and term project)

  biasesvcoeffy
numSupVecs

i

svxd

i
i  





1

)*/1(
2

*1
s

 Much easier computation than training

 Could implement on a device without MATLAB (e.g., a

smartphone) easily

