
CSSE463: Image Recognition  Day 18 

 Upcoming schedule:  

 Lightning talks shortly 

 Midterm exam Monday 

 Sunset detector due Wednesday 

 



Multilayer feedforward neural nets 

 Many perceptrons 

 

 Organized into layers 

 Input (sensory) layer 

 Hidden layer(s): 2 proven 
sufficient to model any 
arbitrary function 

 Output (classification) 
layer 

 

 Powerful! 

 

 Calculates functions of 
input, maps to output 
layers 

 

 Example 
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XOR example 

 2 inputs 

 1 hidden layer of 5 

neurons 

 1 output 



Backpropagation algorithm 

Initialize all weights randomly 

 For each labeled example: 

 Calculate output using current 
network 

 Update weights across 
network, from output to input, 
using Hebbian learning 

 Iterate until convergence 

 Epsilon decreases at every 
iteration 

 

 Matlab does this for you. 

 matlabNeuralNetDemo.m 
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a. Calculate output (feedforward) 

b. Update weights (feedback) R  peat 
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Parameters 

 Most networks are reasonably robust with 

respect to learning rate and how weights are 

initialized 

 However, figuring out how to  

 normalize your input  

 determine the architecture of your net  

 is a black art. You might need to experiment. 

One hint: 

 Re-run network with different initial weights and 

different architectures, and test performance each 

time on a validation set. Pick best. 



References 

 This is just the tip of the iceberg! See: 
 Sonka, pp. 404-407 

 

 Laurene Fausett. Fundamentals of Neural Networks. 
Prentice Hall, 1994. 
 Approachable for beginner. 

 

 C.M. Bishop. Neural Networks for Pattern 
Classification. Oxford University Press, 1995. 
 Technical reference focused on the art of constructing 

networks (learning rate, # of hidden layers, etc.) 

 

 Matlab neural net help 



SVMs vs. Neural Nets 

 SVM: Training can be expensive 
 Training can take a long time with large data sets. 

Consider that you’ll want to experiment with 
parameters… 

 But the classification runtime and space are O(sd), 
where s is the number of support vectors, and d is the 
dimensionality of the feature vectors.  

 In the worst case, s = size of whole training set (like 
nearest neighbor) 

 But no worse than implementing a neural net with s 
perceptrons in the hidden layer. 

 Empirically shown to have good generalizability even 
with relatively-small training sets and no domain 
knowledge. 

 Neural networks: can tune architecture.  
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How does svmfwd compute y1? 
y1 is just the weighted sum of contributions of individual support vectors: 

 d = data dimension, e.g., 294, s = kernel width. 

numSupVecs, svcoeff (alpha) and bias are learned during training.  

Note: looking at which of your training examples are support vectors can be 

revealing! (Keep in mind for sunset detector and term project) 
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 Much easier computation than training 

 Could implement on a device without MATLAB (e.g., a 

smartphone) easily 


