
CSSE463: Image Recognition Day 17

 See schedule for reminders



Neural networks

 “Biologically inspired” model of computation

 Can model arbitrary real-valued functions for 

classification and association between patterns

 Discriminative model

 Models decision boundary directly

 Less memory than nearest neighbor

 Fast!

 Can be parallelized easily for large problems

 We will take a practical approach to 

classification



Perceptron model

 Computational model of a single neuron

 Inputs

 Outputs

 Function and threshold

 Will be connected to form a complete 

network
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Example: Modeling logic gates

 We’ll do OR together.

 Inputs: x1 = {0,1}, x2 = {0,1}

 We need to pick weights wi and x0 (= -t, the threshold) 

such that it outputs 0 or 1 appropriately 

 Quiz: You do AND, NOT, and XOR. 

 Note that a single perceptron is limited in what it 

can classify. What is the limitation?
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Perceptron training

 Each misclassified sample is used to change the weight “a little bit” 
so that the classification is better the next time. 

 Consider inputs in form x = [x1, x2, … xn]

 Target label is y = {+1,-1}

Algorithm (Hebbian Learning)

 Randomize weights

 Loop until converge
 If  wx + b > 0 and y is -1:

 wi -= e*xi for all i

 b -=  ey

 else if  wx + b < 0 and y is +1:
 wi += e*xi for all i

 b +=  ey

 Else (it’s classified correctly, do nothing)

 e is the learning rate (a parameter that can be tuned).



Multilayer feedforward neural nets

 Many perceptrons

 Organized into layers

 Input (sensory) layer

 Hidden layer(s): 2 proven 
sufficient to model any 
arbitrary function

 Output (classification) 
layer

 Powerful!

 Calculates functions of 
input, maps to output 
layers

 Example

x1

x2

x3

y1

Sensory 

(HSV)
Hidden

(functions) 

Classification

(apple/orange/banana)

y2

y3
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XOR example

 2 inputs

 1 hidden layer of 5 

neurons

 1 output



Backpropagation algorithm

Initialize all weights randomly

 For each labeled example:

 Calculate output using current 
network

 Update weights across 
network, from output to input, 
using Hebbian learning

 Iterate until convergence

 Epsilon decreases at every 
iteration

 Matlab does this for you. 

 matlabNeuralNetDemo.m

x1

x2

x3

y1

y2

y3

a. Calculate output (feedforward)

b. Update weights (feedback)R  peat
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Parameters

 Most networks are reasonably robust with 

respect to learning rate and how weights are 

initialized

 However, figuring out how to 

 normalize your input, and 

 determine the architecture of your net 

 is a black art. You might need to experiment. 

One hint:

 Re-run network with different initial weights and 

different architectures, and test performance each 

time on a validation set. Pick best.


