
CSSE463: Image Recognition Day 17

 See schedule for reminders

Neural networks

 “Biologically inspired” model of computation

 Can model arbitrary real-valued functions for

classification and association between patterns

 Discriminative model

 Models decision boundary directly

 Less memory than nearest neighbor

 Fast!

 Can be parallelized easily for large problems

 We will take a practical approach to

classification

Perceptron model

 Computational model of a single neuron

 Inputs

 Outputs

 Function and threshold

 Will be connected to form a complete

network

Q1,2

Example: Modeling logic gates

 We’ll do OR together.

 Inputs: x1 = {0,1}, x2 = {0,1}

 We need to pick weights wi and x0 (= -t, the threshold)

such that it outputs 0 or 1 appropriately

 Quiz: You do AND, NOT, and XOR.

 Note that a single perceptron is limited in what it

can classify. What is the limitation?

Q3

Perceptron training

 Each misclassified sample is used to change the weight “a little bit”
so that the classification is better the next time.

 Consider inputs in form x = [x1, x2, … xn]

 Target label is y = {+1,-1}

Algorithm (Hebbian Learning)

 Randomize weights

 Loop until converge
 If wx + b > 0 and y is -1:

 wi -= e*xi for all i

 b -= ey

 else if wx + b < 0 and y is +1:
 wi += e*xi for all i

 b += ey

 Else (it’s classified correctly, do nothing)

 e is the learning rate (a parameter that can be tuned).

Multilayer feedforward neural nets

 Many perceptrons

 Organized into layers

 Input (sensory) layer

 Hidden layer(s): 2 proven
sufficient to model any
arbitrary function

 Output (classification)
layer

 Powerful!

 Calculates functions of
input, maps to output
layers

 Example

x1

x2

x3

y1

Sensory

(HSV)
Hidden

(functions)

Classification

(apple/orange/banana)

y2

y3

Q4

XOR example

 2 inputs

 1 hidden layer of 5

neurons

 1 output

Backpropagation algorithm

Initialize all weights randomly

 For each labeled example:

 Calculate output using current
network

 Update weights across
network, from output to input,
using Hebbian learning

 Iterate until convergence

 Epsilon decreases at every
iteration

 Matlab does this for you. 

 matlabNeuralNetDemo.m

x1

x2

x3

y1

y2

y3

a. Calculate output (feedforward)

b. Update weights (feedback)R peat

Q5

Parameters

 Most networks are reasonably robust with

respect to learning rate and how weights are

initialized

 However, figuring out how to

 normalize your input, and

 determine the architecture of your net

 is a black art. You might need to experiment.

One hint:

 Re-run network with different initial weights and

different architectures, and test performance each

time on a validation set. Pick best.

