
CSSE463: Image Recognition Day 31

 Today: Bayesian classifiers 

 Tomorrow: project meetings. 

 Questions?



Exam 3 Thursday

 Closed book, notes, computer

 BUT you may bring notes (index card or 1-side of paper)

 You may also want a calculator.

 Pdf of review questions ?

 Not cumulative: focus is k-means and later.

 More hints tomorrow?



Bayesian classifiers

 Use training data

 Assume that you know 
probabilities of each feature. 

 If 2 classes:

 Classes w1 and w2

 Say, circles vs. non-circles

 A single feature, x

 Both classes equally likely

 Both types of errors equally 
bad

 Where should we set the 
threshold between classes? 
Here?

 Where in graph are 2 types of 
errors? 

x

p(x) P(x|w1)

Non-circles

P(x|w2)

Circles

Detected as 

circles

Q1-4



What if we have prior information?

 Bayesian probabilities say that if we only 

expect 10% of the objects to be circles, 

that should affect our classification

Q5-8



Bayesian classifier in general

 Bayes rule:
 Verify with example

 For classifiers:
 x = feature(s)

 wi = class

 P(w|x) = posterior probability

 P(w) = prior

 P(x) = unconditional probability 

 Find best class by maximum a 
posteriori (MAP) priniciple. Find 
class i that maximizes P(wi|x).
 Denominator doesn’t affect 

calculations

 Example: 
 indoor/outdoor classification
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Bayes  rule is used in prediction of disease

http://www.youtube.com/watch?v=D8VZqxcu0I0

Can you verify the approximation they found?

http://www.youtube.com/watch?v=D8VZqxcu0I0


Indoor vs. outdoor classification

 I can use low-level image info (color, 

texture, etc)

 But there’s another source of really helpful 

info! 



Camera Metadata Distributions
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Why we need Bayes Rule

Problem:

We know conditional probabilities like P(flash was on | indoor)

We want to find conditional probabilities like 

P(indoor | flash was on, exp time = 0.017, sd=8 ft, SVM output)

Let w = class of image, and x = all the evidence.

More generally, we know P( x | w ) from the training set (why?) 

But we want P(w | x)
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Using Bayes Rule
P(w|x) = P(x|w)P(w)/P(x)
The denominator is constant for an image, so

P(w|x) = aP(x|w)P(w)

Q9



Using Bayes Rule
P(w|x) = P(x|w)P(w)/P(x)
The denominator is constant for an image, so

P(w|x) = aP(x|w)P(w)

We have two types of features, from image 
metadata (M) and from low-level features, like 
color (L)

Conditional independence means P(x|w) = 
P(M|w)P(L|w)

P(w|X) = aP(M|w) P(L|w) P(w)

From histograms From SVM
Priors 

(initial bias)



Bayesian network

 Efficient way to encode conditional 

probability distributions and calculate 

marginals

 Use for classification by having the 

classification node at the root

 Examples

 Indoor-outdoor classification

 Automatic image orientation detection



Indoor vs. outdoor classification
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Effects of Image Capture Context

Recall for a class C is fraction of C classified correctly



Orientation detection

 See IEEE TPAMI paper
 Hardcopy or posted

 Also uses single-feature Bayesian classifier 
(answer to #1-4)

 Keys: 
 4-class problem (North, South, East, West)

 Priors really helped here!

 You should be able to understand the two 
papers (both posted)


