CSSE463: Image Recognition

Day 14

- Market analysis headline:
 - "The image recognition market is estimated to grow from \$9.65 billion in 2014 to \$25.65 billion by 2019."
- Lab due Weds.
 - These solutions assume that you don't threshold the shapes.ppt image:
 - Shape1: elongation = 1.632636, C1 = 19.2531, C2 = 5.0393
- Feedback on midterm plus/delta
 - Projects/labs reinforce theory; interesting examples, topics, presentation; favorite class; enjoying
 - Lecture and assignment pace OK or slightly off.
- This week:
 - Tuesday: Support Vector Machine (SVM) Introduction and derivation
 - Thursday: Project info, SVM demo
 - Friday: SVM lab

SVMs: "Best" decision boundary

- Consider a 2class problem
- Start by assuming each class is linearly separable
- There are many separating hyperplanes...
- Which would you choose?

SVMs: "Best" decision boundary

- The "best"
 hyperplane is the
 one that
 maximizes the
 margin, ρ,
 between the
 classes.
- Some training points will always lie on the margin
 - These are called "support vectors"
 - #2,4,9 to the left
- Why does this name make sense intuitively?

Support vectors

- The support vectors are the toughest to classify
- What would happen to the decision boundary if we moved one of them, say #4?
- A different margin would have maximal width!

Problem

- Maximize the margin width
- while classifying all the data points correctly...

Mathematical formulation of the hyperplane

- On paper
- Key ideas:
 - Optimum separating hyperplane:
 - Distance to margin:
 - Can show the margin width =
 - Want to maximize margin

Finding the optimal hyperplane

- We need to find w and b that satisfy the system of inequalities:
- where w minimizes the cost function:
- (Recall that we want to minimize ||w₀||, which is equivalent to minimizing ||w_{op}||²=w^Tw)
- Quadratic programming problem
 - Use Lagrange multipliers
 - Switch to the dual of the problem

$$d_i(w^T x_i + b) \ge 1 \text{ for } i = 1, 2, N$$

$$\phi(w) = \frac{1}{2} w^T w$$

Non-separable data

- Allow data points to be misclassifed
- But assign a cost to each misclassified point.
- The cost is bounded by the parameter C (which you can set)
- You can set different bounds for each class. Why?
 - Can weigh false positives and false negatives differently

Can we do better?

- Cover's Theorem from information theory says that we can map nonseparable data in the input space to a feature space where the data is separable, with high probability, if:
 - The mapping is nonlinear
 - The feature space has a higher dimension
- The mapping is called a kernel function.
 - Replace every instance of x_ix_i in derivation with K(x_ix_i)
 - Lots of math would follow here to show it works
- Example:
 - separate x_1 XOR x_2 by adding a dimension $x_3 = x_1x_2$

Most common kernel functions

- Polynomial
- function (RBF)
- Two-layer perceptron

• Polynomial
• Gaussian Radial-basis function (RBF)
• Two-layer percentron
$$K(x,x_i) = \exp\left(-\frac{1}{2\sigma^2}\|x - x_i\|^2\right)$$

- You choose p, σ , or β_i
- My experience with real data: use Gaussian RBF!

Easy	Difficulty of problem	Hard
p=1, p=2,	higher p	RBF