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ABSTRACT
Knowledge of the semantic classification of an image can be used
to improve the accuracy of queries in content-based image
organization and retrieval and to provide customized image
enhancement. We developed an exemplar-based system for
classifying sunset scenes. However, the performance of such a
system depends largely on the size and quality of the set of training
exemplars, which can be limited in practice. In addition, variations
in scene content, as well as distracting regions, may exist in many
testing images to prohibit good matches with the exemplars. We
propose using simulated spatial and temporal image recomposition
to address such issues. The recomposition schemes boost the recall
of sunset images from a reasonably large data set by 10%, while
holding the false positive rate constant.

1. INTRODUCTION

Automatically determining the semantic classification (e.g., sunset,
picnic, beach) of an arbitrary image is a difficult problem. Much
research has been done recently, and a variety of classifiers and
feature sets have been proposed. The most common design for
such systems has been to use low-level features (e.g., color,
texture) and statistical pattern recognition techniques. Such
systems are exemplar-based, relying on learning patterns from a
training set [1, 2].

Semantic scene classification can improve the performance of
content-based image organization and retrieval (CBIR). Many
current CBIR systems allow a user to specify an image and search
for images similar to it, where similarity is often defined only by
color or texture properties. This so-called "query by example" has
often proved to be inadequate [3]. Knowing the category of a
scene a priori helps narrow the search space dramatically, reducing
the search time, increasing the hit rate, and lowering the false-
alarm rate [4].

Scene classification can also find application in image
enhancement. Rather than applying generic color and exposure
adjustment to all scenes, we can customize them to the scene, e.g.,
retaining or boosting brilliant colors in sunset images while
removing warm-colored cast from tungsten-illuminated indoor
images.

In the literature, sunset classification is limited to small,
constrained data sets. Vailaya et al. reported 94.3% accuracy on
the constrained problem of separating 155 sunset images from 373
forest and mountain scenes, which were chosen because they were
unambiguous in their scene content compared to sunset scenes [2].
Belongie et al. [1] reported 89% accuracy on a limited data set
(approximately 60 training images and 30 testing images from each

of twelve classes). Smith and Li [4] reported 86.1% accuracy on a
small dataset of 91 training images (including 10 sunsets) and 266
testing images (including 36 sunsets). It is unclear how well any of
the above systems would generalize for a large data set. We are
aware of no results on larger data sets in the literature (except
within a CBIR framework, which does not translate directly into
classification accuracy).

What are the obstacles to accurate scene classification and
sunset detection in particular? The primary obstacle appears to be
the tremendous variety of images found within most semantic
classes. Exemplar-based systems must account for such variation in
their training sets. Even hundreds of exemplars do not necessarily
capture all of the variability inherent in some classes, like that of
sunset images. Sunset images captured at various stages of the
sunset can vary greatly in color, as the colors tend to become more
brilliant as the sun approaches the horizon, and fade as time
progresses further. The composition can also vary due in part to
the camera's field of view: Does it encompass the horizon or the
sky only? Where is the sun relative to the horizon? Is the sun
centered or offset to one side?

A second reason for limited success in exemplar-based
classification is that images often contain excessive or distracting
foreground regions (Fig. 1), which cause the scene to look less
prototypical and thus not match any of the training exemplars well.
This is especially true in consumer images, where the typical
snapshooter pays less attention to composition and lighting than
would a professional photographer. Therefore, consumer images
contain greater variability, causing the high performance (on
professionally taken stock photo libraries such as the Corel
database) of many existing systems to decline when used in this
domain.

Fig. 1. Sunset images with distracting foreground regions.

We address each of these issues by introducing the concept of
spatial image recomposition; designed to minimize the impact of
undesirable composition (e.g., foreground objects), and of
simulated temporal image recomposition, designed to minimize
the effect of color changes occurring over time.



2. METHODOLOGY

We now present the features and classifier used in our baseline
system, as well as the concept and use of image recomposition for
boosting the system performance.

2.1. Baseline system

In the hierarchical image classification scheme in [2], sunsets were
easily separated from mountain and forest scenes. Color was found
to be more salient for the problem than other features, such as edge
direction alone, confirming our intuition that sunsets are
recognizable primarily by their brilliant, warm colors. Furthermore,
we believe spatial information should be incorporated to
distinguish sunsets from other scenes containing warm colors, such
as those of desert rock formations and fireworks. Therefore, we
used spatial color moments, dividing the image into 49 regions
using a 7 x 7 grid and computing the mean and variance of each
band of an Luv-transformed image. This yields 49 x 2 x 3 = 294
features.

We used a Support Vector Machine (SVM) as the classifier
because SVMs have been shown to give higher performance than
other classifiers, such as Learning Vector Quantizers (LVQ) on
similar problems [5]. We used a Gaussian kernel, creating an RBF-
style classifier. SVMs are designed for two-class problems, such as
ours, and output a real number for each testing image. The sign is
the classification and the magnitude can be used as a loose measure
of the confidence.

2.2. Image recomposition

One of the largest obstacles to high performance in semantic scene
classification is the immense variety, both in terms of color and
composition, of images in each class. Because manually collecting
large numbers of prototypical images to capture this variability is
time consuming and still may not be comprehensive, it is critical to
make efficient use of all available training data.

Furthermore, the best match of a testing image with the set of
training exemplars occurs when the image matches an exemplar of
its class, e.g., both in its color and its composition. However, the
test image may contain variations not present in the training set.
For instance, the degree of match is affected by the photographer's
choice of what to capture in the image (affecting its composition)
and when to capture the image (potentially affecting its color
because of changes in the scene illuminant over time). If it were
possible to "relive" the scene, one could attempt to derive images
with more prototypical color and composition for the class (Fig.
2). How can one “relive” the scene? In other words, how can one
transform a testing image into one that will match a prototypical
exemplar better or produce more prototypical exemplars for
training?

We propose a concept called simulated spatial and temporal
recomposition to address the above issues. The different types and
uses of spatial recomposition (mirroring and cropping images) and
simulated temporal recomposition (shifting the color of images)
will be elaborated in detail. While these types of image
recomposition are by no means exhaustive, we found them to work
well for sunset detection. We now detail the schemes we used to
boost sunset classification performance.

(a) (b)

(c) (d)

Fig. 2. “Reliving the scene.” The original scene (a) contains a
salient subregion (b), which is cropped and resized (c). Finally, an
illuminant shift (d) is applied, simulating a sunset occurring later in
time.

2.3. Boosting performance using recomposition schemes

Using recomposition on a limited-size set of training data can yield
a richer, more diverse set of exemplars. Our goal is to obtain these
exemplars in an unsupervised manner, i.e., without having to
inspect each image. One technique is to flip each image
horizontally, assuming the image is in its correct orientation,
thereby doubling the number of exemplars. Clearly, the
classification of the new image is unchanged, e.g., flipping a sunset
image with the sun on the left side of the image moves the sun to
the right side, but it is still just as valid a sunset (Fig. 3).

Another technique is to crop the edges of an image. The
assumption is that the salient portion of an image is in the center,
and imperfect composition is caused by distractions in the
periphery. Cropping from each side of the image, in turn, produces
four new images of the same classification. Of course, one does
not want to lose a salient part of the image (such as the sun or the
horizon line in a sunset). If we conservatively crop a small amount,
e.g., 10%, the semantic classification of a scene is highly unlikely
to change, although the classification by an algorithm may change.

Fig. 3. Spatial recomposition. The original image (center) can be
transformed by horizontal mirroring (left) or cropping (20% from
bottom shown on right).

If still more training data is needed, one may use more
aggressive recompositions, such as larger amounts of cropping or
significant color shifts, however, care must be taken to screen out
those images in which the recomposition has caused the image to
lose salient scene content.

While recomposing the training set yields more exemplars,
recomposing a test image, and classifying each new, recomposed
image yields multiple classifications of the original image. In terms



of spatial recomposition, the edges of the image can be cropped in
an attempt to better match the features of a test image against the
exemplars. We may need to crop more aggressively (as in Fig. 2)
to obtain such a match. However, if the classifier has been trained
using mirrored images, there is no need to mirror the test image
because symmetry is already built into the classifier.

Some classes of images, like sunsets, contain a large variation
in their global color distribution. Shifting the overall color of the
test image appropriately can yield a better match with a training
exemplar. For example, an early and a late sunset may have the
same spatial distribution of color (bright sky over dark
foreground), but the overall appearance of the early sunset is much
cooler, as a result of the color change in the scene illuminant. By
artificially changing the color along the illuminant (red-blue) axis
[6] toward the warmer side, we can simulate the appearance of
capturing the image later in time. We refer to this illuminant shift
as simulated temporal recomposition (Fig. 4). Likewise, variation
in the magnitude of illuminant in the scene can be handled by a
shift along the luminance axis. Color shifts along other axes may be
applicable in other problem domains.

Fig. 4. Temporal recomposition. A series of illuminant shifts (along
red-blue axis) in 1.5-stop increments, starting from –3 stops and
ending at +4.5 stops, is shown. A stop is a photographic term equal
to a 2X change in exposure or magnitude [6].

Whether using spatial or temporal recomposition, the classifier
may or may not label a new, recomposed image with the same
class as the original image. When the classifications of the
recomposed images differ, we need to adjudicate using a meta-
classifier. In a two-class problem, we found that one interesting
meta-classifier of r recompositions is to use the mth order statistic,
e.g., the maximum (m = 1), the second largest (m = 2), or the
median (m = r/2). Varying the parameter m moves the classifier’s
position on the operating curve. Small m classifies images
positively in an aggressive manner, giving greater recall at the
expense of more false positives. The choice of m will clearly
depend on the application.

Recomposition in testing is useful even when it has been used
in training, because there is no guarantee that recomposition in
training exemplars has exhaustively created all possible variations
and completely filled the image space.

3. RESULTS

We experimented with 3 databases, as shown in Table 1. Database
D1 was used as a benchmark for our baseline system: sunset and
non-sunset images similar to those in [2] (in number and content)
were chosen. We achieved comparable results to ensure that our
baseline classifier is as good.

Table 1. Sunset Training and Testing Sets
(S: sunset, NS: non-sunset, C: confusing)

Database Size S:NS S:C Source
D1 577 1:2 1:0 Corel
D2 1342 1:5 2:1 Corel + personal
D3 2085 1:9 1:0 Consumer
TRAIN 1766 1:5 2:1 Corel + personal

Database D2, consisting of a mix of consumer and stock
photos, is a more challenging set to classify. We included 200
images with content chosen purposefully to push the limits of the
system (such as fire, moon, fireworks, tungsten lighting, and
red/orange flowers), giving a ratio of sunset to confusing images of
2:1. We also included a wide variety of non-sunset images, in an
attempt to more realistically model the space of consumer and
professional photos, giving an overall 1:5 ratio of sunset to non-
sunset images.

The training set of 1766 images (independently derived from
the same sources as D2) was enriched by spatial recomposition.
For each image, we trained on the original image, four images
generated by cropping 10% off each side of the image in turn, and
the mirror images of each of the five, yielding ten times as many
training images.

When testing with images from D2, we used spatial
recomposition as well, classifying the original image and four each
of 10%-cropped and 20%-cropped images. We combined them
using the second highest score of the nine generated. It is less
prone to outliers than the maximum score, which gives highest
recall and highest false positive rates.

In an effort to correctly classify the subtle sunsets, we also
incorporated simulated temporal recomposition in testing. We
repeated the combination of nine spatially recomposed images
twice, once on the original image, and once on the illuminant-
shifted image (simulating an illuminant shift of +3 stops on the
original image). The maximum of the two scores was used.

Performance is evaluated using three standard measures.
Accuracy is defined as ratio of correct classifications to total
images. True positive rate (TPR) is defined as the ratio of sunsets
correctly classified (hits) to the total number of positive images
(sunsets). False positive rate (FPR) is defined as the ratio of false
positives to the number of negative (non-sunset) images. Table 2
shows how different recomposition schemes affected each of these
measures.

Table 2. Effects of Image Recomposition.

Dataset Recomposition TPR FPR ACC
D2 None (baseline) 74.8% 3.8% 92.7%
D2 Training only 74.8% 2.0% 94.2%
D2 Testing only 81.1% 5.5% 92.3%
D2 Both 85.1% 3.8% 94.3%
D2 Both + temporal 89.6% 8.8% 90.9%
D3 Both 71.3% 0.5% 96.4%
D3 Both + temporal 83.8% 7.2% 91.3%

Using recomposition in the training set increased accuracy
significantly, presumably because the set was much richer. This
overcomes some of the effects of having a limited training set.
Using recomposition in the testing set increased both the number
of hits and the number of false positives. Finally, using



recomposition in both training and testing gave the best results
overall. The best scenario gave an increase in a true positive rate of
10%, while holding the false positive rate constant

Using spatial recomposition on the testing images enabled us
to meet our goal of correctly classifying sunset images with large
distracting foreground regions: the images presented in Figs. 1 and
2 were all classified incorrectly by the baseline system, but were
classified correctly when recomposition was used (gained by
recomposition). The image shown in the middle of Fig. 1 is a good
example of how recomposition by cropping can help. Cropping the
large, dark, water region in the foreground from the image
increases the SVM score substantially. The other images fared
similarly, e.g., cropping the bottom 20% from the image on the
right eliminated the confusing reflection in the water.

However, the number of false positives also increased, partially
offsetting the gain in recall. Typical false positives induced by
recomposition are shown in Fig. 5. Each image contains patterns
not typical of sunsets (e.g., the multiple bright regions in the night
images or the sky in the desert image), which, when cropped out,
make the image appear much more sunset-like.

Fig. 5. False positives induced by spatial recomposition.

Some sunset images have prototypical composition, but weak
colors, corresponding to early or late sunsets. Shifting the scene
illuminant “warms up” these images, causing them to be classified
correctly, but also introduces many false positives, both of which
are shown in Fig. 6.

Fig. 6. Sunsets and false positives induced when temporal
recomposition are used. The original (top) and illuminant-shifted
(+3 stops) images (bottom) are shown. Note that the image on the
far right is one of the purposefully confusing images: a winter
scene with the sun low in the horizon, but not setting.

Sample images that were misclassified are presented in Fig. 7.
The missed sunset images are understandable, given the features
used. Some images contain distractions either in the middle or on
both sides of the image, while others contain weak or non-typical
color. Among the false positives, one can see a number of the
purposefully chosen, confusing, non-sunset images. Some could
possibly be avoided by incorporating other features, such as edge
direction, but others, such as the fire and ballet scenes, may be
nearly impossible to disambiguate.

The accuracy on D3 was excellent because we correctly

rejected most of the non-sunset images. Our TPR was somewhat
lower because of many subtle sunsets in the collection. Temporal
recomposition helped gain many of the early sunsets.

4. CONCLUSIONS

With an exemplar-based sunset scene classifier as the baseline
system, we are able to boost its performance by using image
recomposition in training, which increases the diversity of
exemplars. Furthermore, using recomposition in the testing phase
allows us to tailor our operating point to the need of an
application. Finally, the concepts used in this study should apply to
any suitable baseline sunset scene classifier and generalize to other
outdoor scene classes.

Fig. 7. Samples of incorrectly classified images from D2.

Fig. 8. Samples of correctly classified sunsets.
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