CSSE463 Exam 1 Study Guide

The main ideas are feature extraction (image processing) and basic classifier concepts. The exam will be written, although some questions may ask you to write a few lines of Matlab code. Here are some sample questions. I will likely take some exam questions from these, although this list is by no means exhaustive.

- 1. Describe in detail how Matlab stores images as matrices.
- 2. Describe and explain the difference between various color spaces, such as RGB, HSV, and LST. Be able to sketch pictures and providing clear (non-circular) definitions of each of the three bands in the HSV space.
- 3. Understand 1D and 2D filters for smoothing (box and Gaussian filters) and edge finding.
 - a. Describe basic mathematical properties of each (e.g., why smoothing filters must sum to 1).
 - b. Be able to apply them to images manually.
- 4. Describe the process of computing the edge magnitude and direction in a grayscale image.
- 5. Compute each of the four morphological operations on simple image elements.
- 6. Use morphological operators to aid object recognition.
- 7. Describe appropriate times for a classifier to reject a sample.
- 8. Define and compute the various accuracy measures on test sets (e.g., recall).
- 9. Apply principles of classification: feature space, decision rules, decision surface. For example, draw a plot of tabulated feature data to represent a 2D feature space, and draw decision boundaries for a nearest neighbor classifier.
- 10. Create perceptrons to do simple classification.
- 11. Describe the basic formulation of support vector machines, including how an SVM can classify nonlinearly-separable data with 100% accuracy.
- 12. Compute shape features(e.g., area, perimeter, circularity, extent) for various binary shapes.
- 13. Sketch gray-level mapping functions that increase contrast, decrease contrast, and invert images.
- 14. Draw a radial representation of a shape.
- 15. Compute and describe the computation procedure for the covariance matrix of an image element, as used to determine principal axes and elongation, and plot major and minor axes given a set of eigenvectors.
- 16. Use Bayesian probability. For example, interpret an intensity histogram and compute an optimal threshold from probability density functions of the foreground and background.
- 17. Use the MAP principle to find the most likely class, given evidence.
- 18. Show how inner boundary tracing (Sonka, p 142-3) works on a given region.
- 19. Describe an algorithm to compute the area of a region without holes, given only its perimeter pixels, without regenerating the binary image.